Homework 3

Probability Theory (MATH 235B, Winter 2008)

1. Consider a sequence of random variables $\left(X_{n}\right)$.
(a) Show that $\sup _{n} \mathbb{E}\left|X_{n}\right|<\infty$ implies tightness of the sequence $\left(X_{n}\right)$.
(b) Show that the converse in (a) does not always hold, even if all random variables have finite means.
2. Consider a random variable X such that $\mathbb{P}(X=1)=\mathbb{P}(X=-1)=\frac{1}{2}$, a random variable Y uniformly distributed in the interval $[-1,1]$, and suppose that X and Y are independent.
(a) Show that $X+Y$ is uniformly distributed in the interval $[-2,2]$.
(b) Translate this result into a statement about characteristic functions. You should obtain some well known trigonometric identity.
3. A random variable X has a lattice distribution if there exist a real number a and a positive number b such that all values of X have form $a+n b, n \in \mathbb{Z}$.

Consider a random variable X with characteristic function φ. Prove that X has a lattice distribution if and only if $|\varphi(t)|=1$ for some $t \neq 0$.
4. Let X_{n} be random variables with distribution functions F_{n} and characteristic functions φ_{n}. Let c be a constant. Prove that $X_{n} \rightarrow c$ in probability if and only if $\varphi_{n}(t) \rightarrow e^{i t c}$ for every $t \in \mathbb{R}$.

