Homework 5

Probability Theory (MATH 235B, Winter 2008)

1. A symmetrization of a random variable X is a random variable $X^{s}=$ $X-X^{\prime}$ where X^{\prime} is an independent copy of X.
(a) Prove that X^{s} is a symmetric random variable.
(b) Express the characteristic function of X^{s} in terms of the characteristic function of X.
(c) Let X and Y be independent random variables. Show that

$$
(X+Y)^{s}=X^{s}+Y^{s}
$$

in distribution (i.e. the left and right hand sides have the same distribution).
2. Show that there do not exist independent, identically distributed random variables X and Y such that $X-Y$ is distributed uniformly in $[-1,1]$.
3. Prove the following version of the Central Limit Theorem. Let X_{1}, X_{2}, \ldots be independent and uniformly bounded random variables with means 0 . Let $S_{n}=X_{1}+\ldots X_{n}$. If the variance s_{n}^{2} of S_{n} goes to infinity then

$$
\frac{S_{n}}{s_{n}} \rightarrow N \quad \text { in distribution, }
$$

where N is the standard normal random variable. (Hint: use Lyapunov's Condition).
4. Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{k}=\frac{\sqrt{15}}{4^{k}}\right)=\mathbb{P}\left(X_{k}=-\frac{\sqrt{15}}{4^{k}}\right)=\frac{1}{2} .
$$

Show that these random variables do not obey the usual Central Limit Theorem. Hint: what is $\mathbb{P}\left(\left|S_{n} / s_{n}\right| \leq 1 / 10\right)$?
5. Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{k}=k^{\alpha}\right)=\mathbb{P}\left(X_{k}=-k^{\alpha}\right)=\frac{1}{2}
$$

where $\alpha \geq-1 / 2$. Prove state the Central Limit Theorem for these random variables.

