Homework 8

Probability Theory (MATH 235B, Winter 2008)

1. Construct an example on a three-point space Ω in which

$$
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mid \mathcal{F}_{2}\right) \neq \mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{2}\right) \mid \mathcal{F}_{1}\right)
$$

for some σ-algebras \mathcal{F}_{1} and \mathcal{F}_{2}.
2. Show that if X and Y are independent random variables then $\mathbb{E}(X \mid Y)=$ $\mathbb{E}(X)$. Show that the converse statement does not hold.
3. Let X and Y be independent, identically distributed random variables with finite mean. Show that

$$
\mathbb{E}(X \mid X+Y)=\frac{X+Y}{2}
$$

4. Define the conditional variance as

$$
\operatorname{var}(X \mid \mathcal{F})=\mathbb{E}\left(X^{2} \mid \mathcal{F}\right)-\mathbb{E}(X \mid \mathcal{F})^{2}
$$

Show that

$$
\operatorname{var}(X)=\mathbb{E}(\operatorname{var}(X \mid \mathcal{F}))+\operatorname{var}(\mathbb{E}(X \mid \mathcal{F}))
$$

5. Suppose that random variables X and Y satisfy

$$
\mathbb{E}(X \mid \mathcal{F})=Y, \quad \mathbb{E}(Y \mid \mathcal{F})=X
$$

for some σ-algebra \mathcal{F}. Show that $X=Y$ a.s.

