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This Friday, we will have a quiz. It will be on undergraduate probability, and
it will not count toward your grade. It will probably be on discrete probability,
things like coins and balls in urns, and the like. So just typical problems. I
will look over this quiz and next Monday, I will outline the solutions a little,
perhaps place them online. You’re also welcome to come to my OHs to discuss.

On the webpage, I’ll post notes (just one page) on the interpretation of set
theory in probability theory. Friday’s quiz will take the whole time.

Now, we’ll start on Lecture 2. So, we’re trying to build a mathematical
foundation into probabalistic thinking. How do we put mathematical rigor into
the mathematical uncertainty? That’s our program for the time. As you know,
we will do it using measure theory.

For the measure theory, we’ll need a big set Ω, called the sample space. The
set Ω will be finite or infinite. It will list all possible outcomes of the experiment.
When we talk about the events A,B, . . . ⊆ Ω, the events are subsets of Ω. The
event that “you have two tails” will be one of the events. Not all possible
collections of outcomes can be considered events! (More colloquially, not all
possible events are allowed.) Thus F will be the collection of all permissible
events.

It may be unclear what should be the permissible events, but it is going to
become clear that the collection must satisfy certain rules. For example, if you
can talk about A, you can also talk about the complement of A. There will be
some rules on F , and the simplest rules will lead to the concept of algebras.

Definition 0.1. A collection F of events is called an algebra if

1. It is closed under complementation:

A ∈ F ⇒ Ac ∈ F

2. It is closed under taking finite union:

A,B ∈ F ⇒ A ∪B ∈ F .

It is immediate from these two conditions that algebras are also closed under
finite intersections:

A,B ∈ F ⇒ A ∩B ∈ F .

Proof. De Morgan’s Law states (A ∩ B)c = Ac ∪ Bc. Thus, A ∩ B = (Ac ∪
Bc)c.1

Example 0.2. • Let F = {∅,Ω}. This is the trivial algebra. In some sense,
it is the “poorest” algebra.

• At the opposite extreme let F = P(Ω) the power set of Ω. This is the
“richest” algebra.

1So far so good?
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The true life is between these extremes.
One more example: I want a natural algebra.

Example 0.3. Take Ω = R. I want all possible intervals to be in the algebra.
Because of the properties of Definition 0.1, we will have the smallest working F
to be

F = {finite unions of intervals in R}.

Note that F will not contain sets that can not be expressed as the finite
union of intervals in R. The unfortunate result is that the concept of algebra is
too weak for probability theory. It does not allow us to talk about these sets.
It does not allow us to talk about limits, which is what we want. So, what is a
remedy to this problem?

You can not put a probability measure on R such that all subsets will be
measurable. Thus, arbitrary infinite unions will be too strong for probability
theory.

What’s the compromise? Only include countable unions (and intersec-
tions)! This is the dogma of probability theory, to include only countable unions.
Then, the concept of algebra will then be replaced by the concept of σ-algebras.

Definition 0.4. A collection F of events is called an σ-algebra if

1. It is closed under complementation:

A ∈ F ⇒ Ac ∈ F

2. It is closed under taking countable unions:

A1, A2, . . . ∈ F =⇒
∞⋃

n=1

An ∈ F .

If we go back to our examples, which are σ-algebras? The first two are, but the
third is not.

You should not worry too much about σ-algebras when working in discrete
probability. Then, you can just take the power set for your algebra.

Let me illustrate this with a very concrete concept, which will only make
sense in the settings of σ-algebras. This is the concept of the limits of sets. In
both the cases of numbers and vectors, we have some topology. The meaning
of closer is quantified by the topology. So this is some kind of limit without
topology. So, here’s a definition:

Definition 0.5. Suppose F is a σ-algebra2. Let A1, A2, . . . ⊆ R.
2on Ω. At this point, I’ll stop specifying the universal set.
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• Then the

lim supAn :=
∞⋂

n=1

∞⋃

k=n

Ak

= {ω ∈ Ω : ∀ n ∃ k ≥ n such that ω ∈ Ak}
= {ω ∈ Ω : ω belongs to infinitely many An’s}
= “Infinitely many events occur”.

• Then the

lim inf An :=
∞⋃

n=1

∞⋂

k=n

Ak

= {ω ∈ Ω : ∃ n such that ∀ k ≥ n, ω ∈ Ak}
= {ω ∈ Ω : ω belongs to all except finitely many An’s}
= “All except finitely many events An occur”.

The only reason for An not to occur is some finite isolation. So these are
two sets. Finally,

Definition 0.6. If lim supAn = lim inf An, then we say

A = lim An = lim supAn = lim inf An

and we say that An converges to A and write An −→ A.

In order to talk about these sets, we need the unions and intersections in
Definition 0.5 to exist. So, this is where we need the σ-algebra axioms.

Example 0.7. Let’s actually go from what we know about the real numbers R.
What’s an example where we have the lim sup and lim inf are different? How
about the sequence:

an =
1
2

+
(−1)n+1

2
Then the lim sup an = 1 and the lim inf an = 0.

How can we use this to make a simple example for the case of sets?

Example 0.8. Let A1 = A3 = A5 = · · · = A and A2 = A4 = A6 = · · · = B
where B is a proper subset of A.

Then lim supAn = A and lim inf An = B.

OCTOBER 3, 2007

There will be a quiz this Friday. The quiz will be on undergraduate prob-
ability. It will not count toward your final grade. The TA has posted office
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hours: My webpage always contains the most current information. The TA’s
office hours are on Tuesday.

One more announcement: We have a Research Focus Group (RFG) this
year, led by Prof. Janko Gravner. The organizational meeting is today at 5:10
pm.

A little note about the text book: I will not be following exactly as you
probably saw already. We will mostly follow the text book. The HW problems,
which I’ll post today right after lecture, will be from the book. Any more
questions?

So, what are we doing so far? We’re looking at foundations. We had Ω, an
abstract set, called the sample space. It lists all possible elementary outcomes of
your experiment. Elementary outcomes may be very well be small. For example,
it’s highly unlikely that your plane leaves in exactly 10 minutes. What we will
do is look at special subsets of Ω: We are looking at some σ-algebra F of subsets
of Ω. We will speak of the probability of the subsets A ∈ F .

So why do we need the strange countable restriction? This is so that we
can now talk about limits of events/sets. Recall Definition 0.5. Usually, in this
hard definition, we are only considering sets that are increasing or decreasing
families of sets.

Definition 0.9. The sequence of events A1, A2, . . . is nonincreasing if A1 ⊇
A2 ⊇ A3 ⊇ · · · . In this case, we write that An ↘.

Similarly, the sequence of events A1, A2, . . . is nondecreasing if A1 ⊆ A2 ⊆
A3 ⊆ · · · . In this case, we write that An ↗.

Proposition 0.10. If An ↗, then An converges, and

limAn =
∞⋃

n=1

An = A.

If An ↘, then An converges, and

lim An =
∞⋂

n=1

An = B.

Proof. Exercise.

Question: (ambiguously stated) Is A in the σ-algebra?

• Answer: From now on, whenever I say that A is an event, I implicitly
mean that A ∈ F .

Question: Are we assuming Ω ∈ F?

• Answer: This turns out to always be, as long as Ω /= ∅. Indeed, take
{a} ∩{ a}c = ∅ ∈ F .
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0.1 Generating σ-algebras

We’ll have the following approach to generate a σ-algebra containing a certain
collection A of subsets of Ω that we (initially) deem interesting:

• Start with an arbitrary collection A of subsets of Ω.

Example 0.11. If Ω = R, then A might consist of all intervals.

• We want the smallest σ-algebra containing A. That’s what we actually
do: We look at all σ-algebras that contain A, and we pick the smallest3.

• Choose the smallest one. Call it σ(A), the σ-algebra generated by A.

What is the smallest one? Why does the smallest one exist? Note, the
arbitrary intersection of σ-algebras is again a σ-algebra. You should check this.
Thus, we can actually define

σ(A) =
⋂

Σ is a σ-algebra containing A
Σ.

This is a very non-constructive idea. You can’t actually observe all σ-
algebras in this intersection. But, heuristically, how do you view σ(A)? The
σ-algebra σ(A) is obtained by taking countably many unions, intersections and
complements.

As an application, let’s do this on the real line, continuing our previous
example. This is an important standard example (in probability and analysis)
called the Borel σ-algebra on R.

Example 0.12. Again, we had Ω = R and A = {(a, b) : −∞ < a < b < ∞}, the
collection of open intervals4. Then σ(A) is called the Borel σ-algebra, denoted
by R, at least in this text.

Elements A ∈ R are called Borel sets. The pair (R,R) is called Borel space.

Many fractals are non-Borel sets. Even fractals are. The set R contains all
“interesting”5 sets on R, except some fractals. In particular, it includes all open
sets, all closed sets, and their “mixtures.” This is an exercise in topology.

Remark 0.13. Everything can be carried over into higher dimensions. In fact,
it is true for all metric spaces. In particular, it is true for Rn. Here, R is the
σ-algebra generated by open sets.

Also, it easily generalizes to intervals Ω = [0, 1] (or any other interval).
Why? By restriction.

It is very natural in probability, analysis, and topology to just cut out a little
window, and look at a subobject in your category.

3What do you do in practice? Keep taking elements in A and apply σ-algebra operations.
Heuristically, this will work.

4Including the closed intervals would have been redudnant.
5Yes, this is an opinion.
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Proposition 0.14. Let F be a σ-algebra on Ω. Let A ∈ F . Then F|A =
{F ∩A : F ∈ F} is a σ-algebra on A.

Applying Proposition 0.14 to Ω = R and A = [0, 1] ∈ F , you obtain the
Borel σ-algebra R|[0,1] on [0, 1]. You can (alternatively) do this by thinking of
[0, 1] as a metric space and doing a direct construction.

I promise not to talk about σ-algebras at such length anymore, because soon
we move into probability.

1 Probability Measures

Again, we have a sample space Ω and a σ-algebra F on Ω. Here’s the bright
idea: each probability should just be an assignment of numbers.

Definition 1.1. A measure on (Ω,F) is a map µ : F → [0,+∞] such that:

• For every disjoint events A1, A2, . . . ∈ F , one has µ (
⋃∞

n=1 An) =
∑∞

n=1 µ(An).

This property is also is phrased by saying that µ is countably additive.

Definition 1.2. If µ(Ω) = 1, then µ is called a probability measure. The triple
(Ω,F , µ) is called a probability space.

OCTOBER 5, 2007

Today, we had a quiz.

OCTOBER 8, 2007

I haven’t look at the quiz yet, but I will and then I’ll tell you something. I
don’t know what yet. By Friday. If you were trying to decide whether or not to
take the course or not, we can look at your quiz together and decide. On Friday,
I’ll go over the quiz with you on the board, and we’ll also post the solutions.

About the homeworks, some announcements. First of all, this I is the indi-
cator function.

I(A) = IA

where
I(A)(x) =

{
1, x ∈ A.
0, x /∈ A.

Now, about my office hours. Please come to my office hours. There are no
other classes I’m teaching. If there’s anything you’d like to discuss, please come.
Today, I feel sick, so I don’t know if I can survive office hours. Those of you
who want to discuss anything today, will you be able to come right after this
class?6 Well, who can come from 2 to 2:30? Who can not come?

Question: What kind of convergence do we have on functions?
6Awww...
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• Answer: As in for Exercise 7, it’s point-wise.

Recall we are discussing measure. Let Ω be the sample space, and let F be
a σ-algebra of subsets of Ω. Recall we had a definition: A measure is a function
µ : F → [0,+∞]. So, for every event, we define a number. But, there’s a
condition: For every collection of disjoint events A1, A2, . . . ∈ F , one has

µ

(
⋃

n

An

)
=

∞∑

n=1

µ(An).

As an example of measure, we can take the cardinality. We can also take, in
the case of R, the length.

In the case of probability, we should only consider values of the measure µ
to be between 0 and 1. Thus, if µ(Ω) = 1, then µ is called a probability measure.
Usually, denoted by P, to emphasize the probability. And, in this case, the triple
(Ω,F , P) is a called a probability space.

You should think of the Ω, F and P as sort of different creatures: If you have
fully-described this triple, then you know everything. That’s why the discussion
of probability theory is based on the discussion of probability space.

So, an example: a simple example is “You roll a dice.” It has six facets,
since it’s a cube. Then the Ω in this case is the set

Ω = {1, 2, . . . , 6}.

So, the events are the things we want to ask of. In the discrete setting, we take
everything, so this is just the power set. Our σ-algebra F is P (Ω). What is the
probability that we’ll have? Say our dice is fair. Then, we have

P(A) =
|A|
6

.

Question: Are we just rolling the dice once? So, how come F is so big?

• Answer: For clarification, we can have other interesting events, like A is
the event that “we get any even number”. Of course, this is just in words.
Mathematically, we say A = {2, 4, 6}. What is the probability P(A) here?
It’s 3

6 = 1
2 .

This is why we consider all of the power set. We are thus able to discuss any
combination (such as A = {1, 4, 5}). So, this is the discrete probability model.

So, now we go into some elementary properties of probability measures,
which are helpful when you get down to computing probabilities of different
combinations of events:

1. P(Ac) = 1− P(A).

Proof. Ω = A ∪Ac, a disjoint union. Hence, P(Ω) = P(A) + P(Ac). Since
P(Ω) = 1, we are done.
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2. A ⊆ B implies P(A) ≤ P(B).

Proof. B = A∪(B\A), a disjoint union. By the additivity axiom, we have
P(B) = P(A) + P(B \A), and P only takes on non-negative values.

Let’s call this property is monotonicity.

3. Then, we have a similar property, called sub-additivity. I’ll do it for two
sets, just for simplicity:

P(A ∪B) ≤ P(A) + P(B).

for arbitrary events A and B.7

Proof. Note that A ∪ B can be written as a disjoint union A ∪ (B \ A).
Hence, P(A ∪ B) = P(A) + P(B \ A) ≤ P(A) + P(B), with the inequality
resulting from monotonicity.

4. (Countable sub-additivity) Whenever you have sub-additivity of two sets,
you can always add (countably many) more sets. Each time, you just use
the additivity property for two sets. A little harder will be to do it for
countable number of sets. So, the property is

P
( ∞⋃

n=1

An

)
≤

∞∑

n=1

P(An).

Proof. Exercise8.

1.1 Continuity of Probability Measures

We have a concept of continuity of probability measures. There are two results
on this. The first is:

Theorem 1.3. (Continuity) Let A1, A2, . . . be a sequence of events. Then

1. If An ↗ A, then P(An) ↗ P(A) as n →∞.

2. If An ↘ A, then P(An) ↘ P(A) as n →∞.

Proof. Let A1, . . . be a sequence of sets. The general idea is to decompose the
union

⋃
n An into “shells.”

7Again, a Venn diagram may be helpful.
8I won’t check if you’ve done this, but you really should do this problem, especially if your

future work is in probability!
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1. That is, let B1 = A1. And for k ≥ 2, define Bk = Ak \ Ak−1. We have A
is the disjoint union

A =
⋃

n

Bk

Hence, P(An) = P(
⋃n

k=1)Bk), because the Bk’s are disjoint. Then, we
have P(

⋃n
k=1)Bk) =

∑n
k=1 P(Bk), by additivity. All of these partial sums

are bounded above by 1. Further, the sequence of partial sums are non-
decreasing. Therefore, it converges (to their least upper bound). In par-
ticular, it converges from below to

∞∑

k=1

P(Bk) = P
( ∞⋃

k=1

Bk

)
= P(A).

2. Exercise, done similarly.

Thus, both properties are proved for probability measures P.

There are uses for negative measures, in things like functional analysis.
There, this kind of argument breaks down. The second property is:

Corollary 1.4. (Continuity II) Let A1, A2, . . . be a sequence of events. Then

1. P(lim inf An) ≤ lim inf P(An) ≤ lim sup P(An) ≤ P(lim supAn).

2. As an immediate consequence, An → A implies P(An) → P(A) as n →∞.

OCTOBER 10, 2007

1.2 Lebesgue measure

Let Ω = R and F = R = { all Borel sets in R}. Let µ be the Lebesgue measure.
Then, the theorem is

Theorem 1.5. There exists a unique measure µ on (R,R) such that µ([a, b]) =
b− a for all a ≤ b.

This measure is then called the Lebesgue measure on R. It makes sense on
intervals, but it’s already mildly problematic if you want to talk about unions
of intervals, due to convergence issues in infinite series. The construction is
actually explicit, and this is half a course in measure theory.

Similarly, a result of this kind holds for the interval Ω = [0, 1] instead of R.
Similar results hold also in higher dimension. Here, Ω = Rn. This measure is
natural. In R3, what is it? It’s volume. Here, we have

µ
(
[a1, b1]× · · · [an, bn]

)
=

n∏

i=1

|bi − ai|.

Also similarly, instead of the whole space, we can look at Ω = [0, 1]n, an n-cube.
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1.2.1 Recurring Example: A delayed flight

Now, we can look at the example of the flight, and discuss the probability space
there. This example was from Lecture 1. Suppose that a flight is delayed by at
most one hour. So, we let Ω = [0, 1]. The σ-algebra we consider is the collection
F = {Borel subsets of [0, 1]}. And then the measure9 that we take is uniform
(because we said that every possible moment of delay was equally likely). So, let
P be the Lebesgue measure. Thus, the triple (Ω,F , P) is our probability space.

2 Conditional Probability

Now, we depart a little from measure theory. We’ll discuss conditional proba-
bility. I’ll assume that you have all seen this a little bit before. The occurrence
of other events, and the knowledge of them, may affect the probability of our
event occurring.

Definition 2.1. Let A and B be two events, and suppose that P(B) > 0. The
conditional probability of A given B is defined to be

P(A|B) :=
P(A ∩B)

P(B)
.

The idea is that we zoom down from the whole space Ω to the subspace B.
If we condition on the event B, that “Delta cancels its flights,” then we see that
A and B, so to speak, ”heavily intersect.”

2.0.2 Example: Longevity in Developing Countries

Let’s do an example. Only half of the population of the developing countries
lives longer than 40 years. The problem is that the child mortality rate is high,
say 40%. We ask, “What is the probability that an adult (in these countries)
lives longer than 40 years?”

Because the question asked about adults, we condition on the event that
the people in question pass the childhood stage. Let B be the event that “the
person does not die as a child” and A be the event that “the person lives longer
than 40 years.”

So, we wish to compute P(A|B), the probability that the average adult
lives longer than 40 years, given that this adult survives childhood. Note that
P(A) = 0.5. The probability of B is P(B) = 0.6. We need to compute the
probability of A ∩ B. What is this intersection? This is the event that both A
and B happen, that the person lives longer than 40 years and does not die as a
child. So, this is just A. In other words, A ⊆ B. So, the probability of A∩B is
the probability of A, the smaller set. So, now it’s easy to compute by Definition
2.1. We have

P(A|B) =
P(A)
P(B)

=
0.5
0.6

=
5
6
≈ 0.83.

9That is, the probability
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Recall Bayes formula. This will give you a good reminder of how this whole
conditional probability thing works.

3 Independence

Now for the major concept of probability theory. It’s independence. Perhaps
the most significant concept in probability theory is independence. It’s sort of
the analogue of continuity for analysis.

You probably know this concept. It’s, in some sense, a negative statement.

Definition 3.1. Events A and B are independent if P(A|B) = P(A).

Equivalently, people will sometimes give (based on the formula in Definition
2.1) an alternate definition

Definition 3.2. Events A and B are independent if

P(A ∩B) = P(A) · P(B).

Of course these are the same, but the first one seems more natural. The
second is an easy by-product of the first. The second definition is nice because
we can more easily add on more events. More generally,

Definition 3.3. Events A1, A2, . . . , An are independent if for every collection
of indices 1 ≤ k1 < k2 < · · · km ≤ n

P(Ak1 ∩Ak2 ∩ · · · ∩Akm) = P(Ak1) · P(Ak2) · · · · · P(Akm).

We can extend this even to the countable intersections:

Definition 3.4. Events A1, A2, . . . are independent if every finite sub-collection
is independent (according to Defintion 3.3).

3.0.3 Example: Tossing a coin

This is the canonical example of independence. So, suppose you toss a coin
twice. Let A be the event “heads comes up in the first toss” and B be the event
that “heads comes up in the second toss.”

We compute: P(A) = 1
2 and P(B) = 1

2 . To count the probability when both
occur, we list out the situations and note that P(A ∩ B) = 1

4 . Thus A and B
are independent.

Really, I don’t know which way you’re thinking of the logic: Either the
probabilities compute the way they do and we conclude that A and B are
independent, or we say that the events are independent and then compute these
probabilities.
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3.0.4 Example: Sampling

Suppose an urn contains 5 white balls and 5 black balls. Now we pick 2 balls
without replacement. (That is, after picking up a ball, we do not put it back in
the urn: we set it aside.) Let’s look at similar events as before

A = first ball is white
B = second ball is white.

Are events A and B independent? No. We can say they are not independent.
Why? After picking up a white ball, we can say that the urn will contain only 4
white balls and 5 white balls. So, P(B|A) = 4

4+5 , and the probability of B itself
(when it is not know what happens with the first ball) is P(B) = 1

2 (because
P(B) = P(Bc), and thus the roles of the colors are symmetric.).

But, on the other hand, if we pick with replacement, then the situation is
the same as the coin tosses. Then events A and B will be independent. (The
exercise is to check this!)

OCTOBER 12, 2007

There is a correllation on the weather with the number of people. The home-
work solutions will be posted online once the remaining people have submitted
the assignment. Let’s discus the HW policy: There’s a 10% penalty every day
past due. Because I also want to post the solutions online, I’ll have to cut off
the solution submission at some time. Let’s say the absolute cut off is Friday,
the end of the week. The reason for all of this is because there is just too much
strain on the TA. Homework solutions will be posted online10. Quiz solutions
are online. The quiz results were good: They were better than I expected. On
the problem with the 10 keys, we should be careful about conditional probabil-
ity: To open the door (within the first five keys) and to not open the door are
not completely symmetric events. Note that the keys are not “replaced into the
urn.” Also, today’s office hours are from 4 o’clock to 5 o’clock p.m.

For a pair of events A and B, we recall Definition 3.2 for the definition of
independence. We can look at all of the combination of events, and we can ask
questions about their independence too. So, we often think of families of events.

Definition 3.5. Two families of A and B events (think σ-algebra) are indepen-
dent if every two events A ∈ A and B ∈ B are independent.

The definition requires that we check all possible pairs of events. Similarly,
if you have more than two families, for any number of families (possibly even
infinitely-many), one has the definition:

10I posted them already, but the permissions are not set.
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Definition 3.6. A collection of families A1,A2, . . . of events are called inde-
pendent if every A1 ∈ A1, A2 ∈ A2, . . . are independent.

Proposition 3.7. Let A and B be events. Let A1 and A2 be events.

1. If A is independent11 of B, then Ac is independent of B.

2. Suppose A1 and A2 are disjoint12. If A1 is independent of B and A2 is
independent of B, then A1 ∪A2 is independent of B.

Proof. We’ll check the first property.

1. We want to check that P(Ac ∩B) = P(Ac) · P(B). We can compute

P(Ac ∩B) = P(B)− P(A ∩B)
= P(B)− P(A)P(B) by the independence
= P(B) (1− P(A))
= P(B) · P(Ac)

The second is left to the reader.

As an exercise (following a student question to part 1 above), can you do
this for more than one A?

The need for disjointness in part is pivotal. Pairwise independence (A in-
dependent of C, B independent of C) does not imply the full independence
(A,B,C independent). See an example in the textbook. This will also work as
a counter-example to the exercise of the footnote in part 2 of the proposition
above.

You might think that this notion of independence is now too subtle to know
how to deal with in combinations, but we do have the following:

Theorem 3.8. Suppose families of events A and B are closed under intersec-
tions (that is, A1, A2 ∈ A ⇒ A1 ∩A2 ∈ A). If A and B are independent, then13

σ(A) and σ(B) are independent.

This is a very strong result, and it’s a non-trivial result. So, we’ll prove it.
This is the first hard result of the course.

Proof. 1. First, we have a reduction. It suffices to prove that σ(A) and B are
independent (because afterwards, we reapply this result, to B and σ(A),
in that order).

11Here, I mean the pair A and B are independent. The relation is symmetric, so sometimes
we use this kind of language that makes it sound one-sided, when really it’s not.

12If A1 and A2 are not disjoint, then this property may fail! This will be the first non-
trivial exercise: Construct an example to show that just individual independence will not be
enough. Similarly for the intersection, the property will fail. This is very interesting: A1 is
independent of B, A2 is independent of B, yet their union will be correlated! The example
will not be exotic: you can do it with (around four) balls in an urn, for example.

13any combination of events form independent events, namely,
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2. We will go around this problem, and consider the form of this set σ(A).
We will consider a family, a subset of σ(A) for which we will know some
property. To slow down, we want to show:

For all A ∈ σ(A) and for all B ∈ B, events A and B are independent.

So, fix B ∈ B. Consider

FB := {A ∈ σ(A) such that A,B are independent}.

We know that A ⊆F B ⊆ σ(A).

3. It suffices to show that
FB is a σ-algebra (1)

since σ(A) is the smallest σ-algebra containing A).
This is nice: We will not even touch σ(A) itself, other than to use this
property. We just have some simple problem14.
Now, we prove property 1.

(a) Let A ∈ FB. Then ⇒ Ac ∈ FB, by Property 1.
(b) A1, A2, . . . ∈ FB =⇒

⋃∞
n=1 An ∈ FB? Well, it is enough to show

A1, A2, . . . independent of B =⇒
⋃∞

n=1 An is independent of B.
• Can we do this for finite unions first? We define a disjoint col-

lection

A1 = A1

A2 = A2 \A1

A3 = A3 \ (A1 ∪A2)
...

First, note that ⋃

n

An =
⋃

n

An.

[PROOF POSTPONED.]

OCTOBER 15, 2007

The HW solutions are posted online. Also, the quiz solutions are there.
We go back to our problem, which was what we can do with independence.

We go back to our theorem from last time, which was about the power of
combining events.

14We avoid some ε-δ-like annoyingness brought to us courtesy of analysis.
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Theorem 3.9. Suppose that families of events A and B are independent, and
both A and B are closed under finite intersections. Then, σ(A) and σ(B) are
independent.

It’s a pretty general theorem. As a specific example, you can think of A and
B being some intervals in R. Not necessarily all intervals. A note on the Borel
σ-algebra: As soon as you know some property on intervals, you can extend it
to all measurable sets.

So, recall the wrong proof. The first reduction was that we don’t have to
do it all at once. In other words, it’s enough to prove that σ(A) and B are
independent. It means that every independent in σ(A) is independent of any
event B ∈ B. Fix an event B ∈ B. So, we want to prove that every event in
σ(A) is independent of B.

We do not even know the form of a general set in the σ-algebra! How do
we go about this? We just use the minimality property of the σ-algebra, and
we don’t rely on any form of the set. So, we look at all of the events that are
independent: That is, consider

FB := {A ∈ σ(A) independent of B}. (2)

We want to show that FB = σ(A). It is enough to prove that FB is a σ-algebra,
because FB ⊇ A and σ(A) is the minimal σ-algebra with this property implies
that σ(A) ⊆ FB.

So, how do we prove (2)?

Proof. We just check that the properties of a σ-algebra hold:

1. If A ∈ FB, then Ac ∈ FB, by “Property 1” of the last lecture.

2. Suppose that A1, A2, . . . ∈ FB. Then, we want

∞⋃

n=1

An ∈ FB.

This is where things got out of control. Why is this hard? If the An’s
are disjoint, then this is true. Why? There was “Property 2” of the last
lecture. If two events are disjoint and independent of B, then their union
is as well. You’d also have to check the limiting of this procedure, but the
continuity would end up telling you that this is okay.
But they may not be disjoint. We only know that An are elements of σ(A).
Our intersection property was true only for the elements of A. So, we can
not just take intersections. So, how do we get around this obstacle? One
possibility is to give up. Another possibility is to change the definition of
σ-algebra: Let us require that the sets that we union must be disjoint.
Then, we’ll prove that this new definition of σ-algebra is the same as the
old, provided that you have the property of “closed under intersection.”
So, we change the definition of σ-algebra, adding disjointedness.
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Definition 3.10. (Dynkin Systems) A collection D of sets is a Dynkin
system if:

(a) A ∈ D ⇒ Ac ∈ D.
(b) A1, A2, . . . ∈ D are disjoint ⇒

⋃∞
n=1 An ∈ D.

Theorem 3.11. (Monotone Class Theorem) If A is closed under inter-
sections, then σ(A) = D(A), where D is the smallest Dynkin system con-
taining A.

So, for free, we can replace σ-algebras with Dynkin systems. So, in order
prove Theorem 3.9, we can replace σ(A) and (B) by D(A) and D(B) by
Theorem 3.11. Then, the wrong proof will now hold (because of disjoint-
edness).

So, what we’ve done in the proof is to verify the axioms of the Dynkin system.

This Dynkin system notion is a bright idea from measure theory that finishes
off the proof. As a simple corollary of Theorem 3.9, we have

Corollary 3.12. Let A1, A2, . . . be independent events. If I ∩ J = ∅, then
σ(Ak : k ∈ I) and σ(Ak : k ∈ J) are independent.

That is, no matter how you split of the two groups into a partition, then
their sigma algebras will be independent.

This corollary is not immediate, right? We don’t have the closed under inter-
section property. So, what do you do there? You may not have all intersections.
So, you simply add them in:

Proof. Define A = { all finite intersections of Ak, k ∈ I}, and define similarly:
B = { all finite intersections of Ak, k ∈ J} But now, how do we know that A
and B are independent? Let’s leave this as an exercise15.

That may all seem very abstract, but now we go to a significant application
of this in probability theory, which is called Kolmogorov’s 0-1 Law.

4 Kolmogorov’s 0-1 Law

In physics, people usually call this phase transitions. Think of water and ice.
This is trying to codify that you really don’t have observed middle ground.

Let A1, A2, . . . be arbitrary events. Every other event that is correlated with
these events should have probability either 0 or 1. Our event A will depend on all
of these A1, A2, . . .. But, how do we say that? We try to say something happens
differently if we were to, say, leave off the first 9 events. So, we introduce a new
notion:

15This is a very nice exercise. You should use the independence of all of the sets A1, A2, . . ..
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Definition 4.1. The tail σ-algebra is

T :=
∞⋂

n=1

σ(An, An+1, An+2, . . .).

The elements of T are called tail events.

So, the tail events are the on

Example 4.2. In a series of coin tosses, the event that “A sequence of 100
consecutive heads occurs infinitely often” is a tail event.

An is “Heads in nth toss.”

Now, the famous theorem:

Theorem 4.3. (Kolmogorov’s 0-1 Law) Let A1, A2, . . . be independent events.
Then every tail event A has probability either 0 or 1.

So, in that example, the probability that you’d have 100 consecutive heads
infinitely-often is either 0 or 1. Who thinks it’s 0? How about 1? Yes, it’s 1.
Try to prove it.

Proof. Let A1, A2, A3, . . . , An−1, An, An+1, . . . , . . . be events (and our event A
is concerned with An, An+1, . . .. Then, by Corollary 3.12, σ(A1, . . . , An−1) and
σ(An, . . . An+1, . . .) are independent. Note, A ∈ σ(An, . . . An+1, . . .). Thus, the
events A1, A2, . . . , An−1, A are independent.

Thus, the sequence A1, A2, . . . , A are independent. Then, by Corollary 3.12,
σ(A1, A2, . . .) and σ(A) are independent. But A ∈ σ(A1, A2, . . .) and A ∈ σ(A),
which are independent collections.

Thus, A is independent of itself. Thus

P(A) = P(A ∩A) = P(A)2.

and so P(A) is either 0 or 1.

4.1 Applications: Percolation Theory

Suppose, given porous material, some liquid is poured on top. Will it reach the
bottom? How fast?

In mathematics, we think of porous material as a lattice, say Z2. We connect
neighboring vertices of this lattice independently with some probability p. The
result is a graph. The problem about this graph is that: does it contain an
infinite cluster? That is, does that complement (the “empty part”) contain an
infinite cluster? Here is an example (this looks like a maze).

The elementary events will be the connections between the neighbors. If you
know the events, then you know exactly the maze. If you know about some local
neighborhood, it does not containing the infinite cluster. Thus, this (containing
an infinite cluster) is a tail event. The An’s are whether or not the nth edge is
connected (after choosing some enumeration of the edges). By the 0-1 Law, the
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probability of an infinite cluster is either 0 or 1. So there is a critical probability
pc below which the probability is 0 and above which the probability is 1.

So, this justifies the phase transition property in physics. It is very hard to
prove that pc = 1

2 . It was proved in the 1980’s. This is a difficult problem of
percolation theory. What happens in Z3, for example, is not known.

People in percolation theory are lucky because they can borrow experimental
results (i.e. intuition for the value pc) from physics.

OCTOBER 17, 2007

Did you take your old homework? Your graded homework is here. Otherwise,
you can just get it in my office. New homework will be online today. On the
first homework, the solutions are posted online. Solutions for the homework
turned in today will be online on Friday. Today, we begin a new big topic on
probability theory (in chapter 2 of the textbook).

5 Random Variables

We often are not interested in the specifics of the probability space. We do
not want to be bothered with what’s heads and what’s tails. For example, you
ask yourself, “How many heads occur on average in n tosses?” How do you
solve it? Our sample space Ω = {H,T} is the outcome of every (individual)
experiment. In every experiment, we do not look at “heads” and “tails” as items
by themselves, but we associate numbers to heads and tails. We assign:

X :
{

H → 1
T → 0

}

This is called a random variable.
Why do we do this? Then, instead of counting heads, we can sum up num-

bers. So, let X1, X2, . . . be independent copies of the random variable X. Then,
the number of heads in n tosses is conveniently represented by:

#(heads) =
n∑

k=1

Xk.

Now, we can take expectation on both sides

E#(heads) = E
n∑

k=1

Xk.

and now, we can swap sum and expectation (a dream!) and get
n∑

k=1

EXk =
n∑

k=1

1
2

=
n

2
.

So, we’ll do this in much bigger generality, and first study the notion of mea-
surable functions, functions from one probability space to another probability
space.
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5.1 Measurable Functions

Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be probability spaces. We often call elements
of F1 and F2 “measurable sets”. In the case of probability spaces, these are the
events.

Now, we consider a different function. Consider a function

f : Ω1 → Ω2

In general, the trouble is that the function f better respect measurability. Why
so? Because Ω1 and Ω2 are not abstract sets: they come with a structure (from
the σ-algebra). For example, if you have a topological space Ω1 and Ω2, the
concept of goodness is continuity. How do we do this in analysis? We have
pullbacks of open sets. We do the same thing here, but we replace the open sets
by measurability.

Definition 5.1. A function f : Ω1 → Ω2 between measure spaces is called
measurable if the preimage of every measurable set is measurable.

In mathematical terms, we summarize:

A ∈ F2 =⇒ f−1(A) ∈ F1.

Recall that the preimage f−1(A) := {ω ∈ Ω1 : f(ω) ∈ A}.
So, if you’re familiar with a little bit of topology or analysis, then this is the

same idea, but just on a different structure.
Suppose we have two functions f and g, and they are very similar, except

on a finite number of points. We’ll try to ignore what they do on this small set
of measure zero. So, if you have two functions that differ on a small set, we’ll
think of them as being the same. This is formalized in the notion of equivalence.

Definition 5.2. Measureable functions f and g that differ on a null set (that
is, a set of measure zero) are called equivalent. That is,

µ1

(
{ω ∈ Ω1 : f(ω) /= g(ω)}

)
= 0.

Such f and g are also called equal almost surely. Or, in analysis, people some-
times write

f
a.e.= g,

where “a.e.” stands for almost everywhere.

Proposition 5.3. A composition of two measurable functions is measurable.

Proof. Exercise.

Just check it like for continuous functions.
This is all too abstract. So, now, we want to do this for random variables.

What is a random variable? It is a measurable map from a probability space
into R. It’s a special case of Definition 5.1.
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Definition 5.4. A random variable is a measurable function on a probability
space.

Usually, random variables are denoted by capital Roman letters. For exam-
ple,

X : (Ω,F , P) → (R,R, µ),

where µ is the Lesbesgue measure, but it doesn’t really matter. It’s usually
Lesbesgue measure. What’s really important is the probability P. For Rn, X is
called a random vector.

5.1.1 Examples

1. The first example is a coin toss. So, Ω = {H,T} and F = P(Ω), the
power set. And, the measure P is the uniform measure on Ω, which means
it gives the same weight to each outcome. Thus P({H}) = P({T}) = 1

2 .
Then, our random variable

X : Ω → R

is defined by the following values:

X(H) = 1,

X(T ) = 0.

2. The next example is the indicator of an event A. This is usually denoted
by X = 1A, the book denotes it by I{A}. Thus, this is the function

X(ω) =
{

1 , ω ∈ A
0 , ω /∈ A.

So, why is this measurable? The Borel set does not contain 0 or 1, then
the preimage is empty. If it contains 0 but not 1, then the preimage is Ac.
If it contains 1 but not 0, then the preimage is A. If it contains both 0
and 1, then the preimage is Ω. This verifies that X is measurable.

3. A little more advanced example are the simple random variables. Instead
of having the image of X be a two-element set (like {0, 1}), we allow some
other finite set.
For example, let X =

∑n
k=1 ak1Ak , where ak are some weights and Ak are

disjoint events that partition Ω:

n⋃

k=1

An = Ω.

For every Ak, we assign some value ak. Again, you can check that simple
random variables are random variables indeed.
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So you have a map, and how do you check it’s measurable. Well, you should
check for each Borel set, but that’s too much work. What if you just checked
on intervals? Is this enough? Yes. In fact, it’s true in general. So, it’s enough
to check on the generators of a σ-algebra.

It suffices to check the measurability property of a map on generators of F2.

Theorem 5.5. Consider a function f : (Ω1,F1, µ1) → (Ω2,F2, µ2), where
F2 = σ(A). Suppose f−1(A) is measurable for every A ∈ A. That is,

A ∈ A ⇒ f−1(A) ∈ F1. (3)

Then f is measurable:

A ∈ σ(A) ⇒ f−1(A) ∈ F1. (4)

This simplifies our life a lot, in the future. If we can not use this trick,
then life will be complicated. Why? It’s because we don’t know the form of
everything. This is analogous to the concept of bases in algebra. So, how can
we do that? We just use the minimality in the definition of σ-algebra.

Proof. Consider F := {A ∈ σ(A) : f−1(A) ∈ F1}. We wish to show that
F = σ(A).

We know that A ⊆ F ⊆ σ(A). Recall that σ(A) is the minimal σ-algebra
containing A. So, if we show that F is a σ-algebra, then all three of these are
actually equal (and there is no “floating around”).

Now, we just use the definition of σ-algebra. We do not even mention gen-
erators: they were just part of this trick. We check:

1. We check A ∈ F ⇒ Ac ∈ F . Note that f−1(Ac) = (f−1(A))c, which you
have to check. And this, proves the first point.

2. Secondly, we check A1, A2, . . . ∈ F , then
⋃∞

n=1 An ∈ F . So, we need
something like

f−1

(
⋃

n

An

)
=

∞⋃

n=1

f−1(An)

Again, you’ll just need to check, by definition of the preimage. This proves
the second point.

Thus, F is a σ-algebra and A ⊆ F ⊆ σ(A) actually implies A ⊆F = σ(A).

Corollary 5.6. Consider a function X : (Ω,F , P) → R. Then X is a random
variable if and only if16 the set {ω : X(ω) ≤ a} is an event for every a ∈ R.

Proof. Use Theorem 5.5 with

(Ω1,F1, µ1) = (Ω,F , P)
(Ω2,F2, µ2) = (R,R, µ)

and recall that R = σ
(
(−∞, a], a ∈ R

)
. Then X−1((−∞, a]) = {ω : X(ω) ≤

a}.
16also abbreviated as “iff”.
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So, this is a very convenient way to check that X is a random variable.

OCTOBER 19, 2007

People who run this lab have asked us to turn off cell phones every time we
enter the room. Please power them off. My office hours are posted: please come
and ask us questions. That said, I will not be able to answer e-mailed questions.
On the web page, you’ll find notes for the class in PDF format.

See http://www.math.ucdavis.edu/∼ekim/classes/235/

5.2 Functions of Random Variables

Recall that a function X : Ω → R is a random variable if for every Borel set
A ⊆ R,

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} = {X ∈ A} (5)

is an event (is measurable). Typically in probability theory, we drop mention
of ω, so this explains the notation of the middle and right sets in (5).

Proposition 5.7. If X1, . . . , XN are random variables, then (X1, . . . , Xn) is a
random vector.

What do we have to do? We have to take a Borel set in the higher-
dimensional space, and pull back. Again, that’s hard: we don’t know what
the Borel sets in higher-dimensional spaces look like. But we can’t just use our
knowledge about R1. So, we can use the theorem from last time. We can check
just on generators, as was given in the corollary from last lecture.

Proof. In view of Corollary 5.6 from the last lecture, it suffices to check the
measurability of the map

ω → (X1(ω), . . . , Xn(ω))

on some generator of Borel σ-algebra in R such as

{(−∞, a1]× (−∞, a2]× · · · × (−∞, an] : a1, a2, . . . , an ∈ R}.

Consider the preimage:

{(X1, . . . , Xn) ∈ (−∞, a1]× (−∞, a2]× · · · × (−∞, an]}
= {X1 ∈ (−∞, a1], . . . , Xn ∈ (−∞, an]}

=
n⋂

k=1

{Xk ∈ (−∞, ak]} =
n⋂

k=1

{Xk ≤ ak}.

So, each set {Xk ≤ a} is measurable (since Xk is a random variable), so their
intersection must be measurable too, by the σ-algebra properties.
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It’s a nice illustration of how generators help us.

Theorem 5.8. (Functions of Random Varibles) Let X1, . . . , Xn be random vari-
ables and f : Rn → R be a (Borel) measurable function. Then, f(X1, . . . , Xn)
is a random variable.

So, as an example of using this, if X is a random variable, then X2 and
sin(x) are random variables. The function

X1 + · · ·+ Xn

is a random variable if X1, . . . , Xn are random variables.
So, how do we prove Theorem 5.8? We have a composition of measurable

functions.

Proof. f(X1, . . . , Xn) is a composition of two measurable functions:

1.
ω 4→ (X1(ω), . . . , Xn(ω))

is measurable by Proposition 5.7.

2. The function
(x1, . . . , xn) 4→ f(x1, . . . , xn)

is measurable by the assumption.

The composition of two measurable maps is a measurable map (cf. Problem
6).

Question: So a measurable map is the same thing as a measurable function?

• Answer: Yes, we usually say measurable function, however. We use term
random vector when the codomain is more-than one-dimensional.

We’ll certainly need this when we talk about random series:

Theorem 5.9. (Limits of random variables) Let X1, X2, . . . be random vari-
ables. Then, supXn, inf Xn, lim supXn, lim inf Xn, and limXn are random
variables when they exist.

Proof. 1. Proof for supXn: By the Corollary in the last lecture, it suffices
to prove that {supXn ≤ a} is a random variable ∀ a ∈ R. But, this is
equal to

∞⋂

n=1

{Xn ≤ a},

which is indeed measurable (as in the Proposition).

2. Proof for inf Xn: Exercise17.

17It’s not so trivial: You can’t just mimick the proof for part 1
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3. Proof for lim supXn: Note that this set is just

inf
n

sup
k≥n

Xk

and then we use parts 1 and 2.

More examples (that follow now from this Corollary) include:

• If X1, X2, . . . are random variables, then so is their infinite sum
∞∑

n=1

Xn.

Why? The value of an infinite series is the limit of partial sums, and the
partial sums are each random variables by the corollary.

Question: How, starting from random variables, can we recover the σ-algebra
they came from? Originally, we have Ω and F , and we had a good map (the
measurable function X). Now, how do we go backwards?

In our “observables” in the physical sense, we can measure the value of
random variables. We don’t really have a full description of Ω and F . How do
random variables generate σ-algebras?

5.3 Random Variables generate σ-algebras

Let X be a random variables on a probability space (Ω,F , P).

Definition 5.10. The σ-algebra on Ω generated by X, denoted by σ(X) is

σ(X) := {X−1(A) : A Borel in R}
= {{X ∈ A} : A Borel in R}

• σ(X) is a σ-algebra indeed. (CHECK)

• σ(X) is the smallest σ-algebra on Ω that makes X measurable (that is, a
random variable)18.

This may seem a bit too abstract, so let’s do some examples.

1. Let X be the indicator function for some event A. (There is a picture that
shows A = [a, b] for some 0 < a < b < 1.) So, what sets belong in σ(X)?
We can see that ∅ is there (by taking an appropriate pre-image of a set
not containing 0 or 1). Similarly, Ω is there, A is there, and Ac is there.
Thus,

σ(X) = {∅,Ω, A, Ac}
Look at how small our σ-algebra is! This is the smallest possible. It’s
minimal.

18Is it clear why? Our definition just lists the sets that need to be measurable!
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2. A little bit more complicated example. Suppose that X is a simple random
variable (that is, it is a finite combination of indicator functions for events
that partition Ω.) That is,

X =
n∑

k=1

akI{An}

Let’s say that there are n = 4 sets in our example. If the ak are all
different19, then we see that

σ(X) = σ(A1, . . . , An).

3. How about X = delay of the flight (flight is delayed by at most 1 hour,
uniformly). Then σ(X) = R, all Borel sets in [0, 1].

So this is how random variables generate σ-algebras. Then, we can sort of
forget the ambient σ-algebra and outcome space Ω. The next thing is to forget
probabilities.

5.4 Random variables induce probability measures on R
Let X be a random variable. For every Borel set A ⊆ R, we define the proba-
bility P (A) of A by

P (A) := P(X ∈ A) = P(X−1(A))

The first P is different from the second P. Then P is a probability measure
on R (“induced”). Then, P is called the distribution of X. If you know the
probability of the value of every X, then you know the distribution.

So, we can forget about F , Ω, and P as well.
Sometime ago, I had this collaborator. I asked him why we distinguished

probability and measure theory. In measure theory, we study measure spaces
(Ω,F , µ). In probability theory, we try to quickly20 forget about measure spaces
and discuss distributions.

OCTOBER 22, 2007

What defines a random variable? We start with the introduction of the
distribution function.

6 Distribution Function

What is the domain where the random variable is defined is not as important as
the values. The specifics of the nature of the sample space Ω is not as important

19This is a nice idea. It says that if you have a random variable, you don’t need the whole
real line Ω = R. You just need the appropriate “chunks” of the real line.

20I guess by the ninth lecture
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as the likelihood of the values on ω ∈ Ω. It may be that Ω’s definition is an
artifact of something, or we may not be able to have a handle on it.

So, we already know how to get rid of the (original) σ-algebra. Basically, we
take the preimages (in our random variable X) of all Borel sets.

What we will do now will all be done by the induced distribution on R. Let’s
repeat some of the last lecture. If X is a random variable, then X induces a
probability measure P on R defined by taking the preimage for every Borel set
A:

P (A) = P(X−1(A)) = P(X ∈ A). (6)

Then, the problem (it’s on the homework as problem 7) to prove that it is indeed
a probability measure on R. That is, prove that (R,R, P ) is a probability space.

So here in (6), there is no reference to Ω whatsoever. We’re defining a new
probability on the real line.

This probability measure P is called the distribution of X. In other words
(being a little bit more informal), the distribution of X is the list of all values:
it lists the probabilities of each Borel (output) set:

distribution of X =
{
P(X ∈ A), A Borel in R

}
.

The distribution is good to know, but it does not define the random variable
uniquely. If we have two random variables, they may be pretty different yet have
the same distribution. Again, different random variables (even very different
random variables) may have the same distribution.

Let’s look at some examples:

a). You could have X(H) = 1, X(T ) = 0, say, for the coin toss. And, you have
Y (H) = 0, Y (T ) = 1. These are very different, but X and Y have the same
distribution.

b). You have two coin tosses. Say X = 1 if H appears in first toss, and X = 0
otherwise. Y = 1 if H appears in the second toss, and Y = 0 otherwise.
Now these variables are not opposite anymore. But the experiments are
independent. But X and Y have the same distribution, even though say are
so different.

So, to straighten out this gap, in probability theory, we introduce two notions.

6.1 Two notions of Equivalence

The stronger notion will be “almost sure equality”, and the other will be “equal-
ity in distributions”, such as the above examples.

Definition 6.1. • Random variables X and Y are equal almost surely, and
we will write

X
a.s.= Y,

if P(X /= Y ) = 0.21

21In analysis, we say “almost everywhere,” and write a.e..

29



• Random variables X and Y are equal in distribution, and we write

X
d.= Y,

if they have the same distribution. Equivalently,

P(X ∈ A) = P(Y ∈ A) for all A Borel.

If X
a.s.= Y , then X

d.= Y , but not vice versa (as these examples show).
Now we’ll work with the notion of distribution for a while. In the second

notion, we have nothing else to work with. We just identify them. So, we’ll
work with this notion X

d.= Y . What is the distribution? It’s the list of all
probabilities for Borel sets. But as usual, this is too big. The distribution
will be uniquely-determined by generators. If you know the probabilities for
generators (−∞, a], then you’ll know everything.

The distribution of X is deteremined by its values of the form P(X ∈ A), A =
(−∞, a], a ∈ R, because such intervals form a generating collection for R, and
a measure is uniquely determined by its values on a collection of generators
(Uniqueness Theorem of Measure Theory22).

So, P(X ∈ A) is just the probability P(X ≤ a), a ∈ R, and probabilities of
this form P(X ≤ a), a ∈ R determine the distribution of X. Now, these are
parametrized by a single number a. So now, we can slide our X along the real
line R. So now we can define an increasing function from R to R. This function
is called the distribution function. This is an important notion which we have
just discovered.

Definition 6.2. The distribution function F : R → [0, 1] of a random variable
X is defined by the rule

F (x) := P(X ≤ x), x ∈ R.

It determines uniquely the distribution of X.

This is a powerful extraction of the experiment. We don’t talk about Ω and
so on. Everything is summarized be the graph of an R → R function.

Example 6.3. Let X = # of H in two independent tosses of a fair coin. So,
we have

X =






0 , prob = 1
4

1 , prob = 1
2

2 , prob = 1
4

So then, we can convert this to a function. There will be jumps on this function
(at 0, 1, and 2).

F (X) = P(X ≤ x) =






0 , x < 0
1
4 , x ∈ [0, 1)

1
4 + 1

2 , x ∈ [1, 2)
1
4 + 1

2 + 1
4 , x ∈ [2,+∞)

22We are not proving this: We’re believing this.
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The distribution function of any simple random variable will look like this, that
is, it will be piecewise-constant (with finitely-many jumps, of course).

Let’s look at a second example: the poor flight that’s always delayed from
the first lecture.

Example 6.4. X = delay of the flight. Recall that the delay ∈ [0, 1] is uniform.
Then,

F (x) = P(X ≤ x) =






0, x < 0
x, x ∈ [0, 1]
1, x ≥ 1.

In this example, the function F is continuous everywhere.

These two examples are very typical. They are on the opposite ends of the
spectrum of what happens. Every distribution function has a certain look:

• Its value is 0 at −∞.

• Its value is 1 at +∞.

• It’s an increasing (rather, non-decreasing) function in between. It can
have jumps in between.

These two examples are representative: they suggest a general form for arbitrary
distribution functions. We’ll put those properties up as a theorem. Most of these
are pretty intuitive from the examples.

Theorem 6.5. (Properties of a distribution function) The distribution function
F (x) of a random variable X has the following properties:

(i) F is nondecreasing and 0 ≤ F (x) ≤ 1.

(ii) F (x) → 0 as x → −∞, and F (x) → 1 as x → +∞.

(iii) F is right-continuous, i.e.

lim
y→x+

F (y) = F (x).

(iv) F has left-hand limits at all points23. Moreover,

F (x−) := lim
y→x−

F (y) = P(X < x).

In particular,
P(X = x) = F (x)− F (x−).

(v) F has at most countable number of discontinuities.
23And these jumps on the distribution function will mean something. What are these

jumps? These jumps mean the probability that X takes this specific value.
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All of this is pretty intuitive, except for maybe the last part. Let’s prove
these one-by-one.

Proof. (i) trivial.

(ii) This is clear, but not trivial. This F (x) is the probability that X ≤ x. If
we can prove that these events have limit the empty set, then we are done.
So, let’s write this down. The events {X ≤ xn} ↘ ∅ as xn → −∞. By the
continuity, P(X ≤ xn) → P(∅) = 0.
Similarly, {X ≤ xn} ↗ Ω as xn → +∞. So, P(X ≤ xn) → P(Ω) = 1.
This completes the proof of (ii).

OCTOBER 24, 2007

If X is a random variable, the distribution function F (x) is defined as

F (x) = P(X ≤ x),

and we know that the distribution uniquely defines your probability. Last time,
we listed some of the properties and started to prove them. They were:

(i) F is non-decreasing, 0 ≤ F (x) ≤ 1.

(ii) F (x) → 0 as x → −∞, and F (x) → 1 as x →∞.

(iii) F is right-continuous: As we approach x from the right, we obtain the
limiting value:

lim
y→x+

F (y) = F (x).

Proof. Suppase we have a sequence converging to x from the right. We
want to show that this arbitrary sequence yn = F (xn) converges to x (even
yn ↘ x). We have

P(X ≤ yn) → P(X ≤ x), n →∞.

The conclusion follows from the convergence of the sets

{X ≤ yn} ↘ {X ≤ x}

and the continuity.

(iv) F has left-hand limits24 at all points, and

F (x−) := lim
y→x−

F (y) = P(X < x).

24Here, we address what happens from the left. There is no continuity, but there is still a
limit.
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In particular, we can give meaning to the jumps25:

P(X = x) = F (x)− F (x−).

Proof. Similar to (ii), we just take yn ↗ x, and we want to show

P(X ≤ yn) → P(X < x), n →∞.

This follows from the convergence of the sets

{X ≤ yn} ↗ {X < x}

and the set on the right is correct (as a strict inequality) when you think
about what is the union. This follows from the continuity of probability.

(v) F has at most countable number of discontinuities.

Proof. The proof doesn’t use much anything, other than continuity and
monotonicity of the function F . First, we look at the jumps of at least
1
2 . There are at most two of these kinds of jumps. Similiarly, there are at
most three jumps of size 1

3 . This continues. Let’s write this down.
Since 0 ≤ F (x) ≤ 1,

• there can be at most 2 jumps (i.e. discontinuities) of height ≥ 1
2 .

Here, “jumps” means points x where F (x)− F (x−) ≥ 1
2 .

• there can be at most 3 jumps of size ∈ [ 13 , 1
2 ).

• there can be at most 4 jumps of size ∈ [ 14 , 1
3 ).

• · · ·

The total number of jumps is countable, and every jump is in [ 1
n , 1

n−1 ) for
some n, so this list contains all possible jumps.

Why is this useful? Let’s make a corollary:

Corollary 6.6. P(X ∈ (a, b]) = F (b)− F (a).

So, we can compute the probability of every interval, just by looking at
the distribution function. This intuitively shows that you can compute the
probability of any event, because each Borel set is the combining of these kinds
of intervals. So the distribution function becomes even more important because
we can make the procedure rigorous.

We can start with a function satisfying properties and get a random variable:

Theorem 6.7. If a function F satisfies (i), (ii), and (iii), then F is the distri-
bution function of some random variable X.

25Jumps mean, so to speak the atoms. They are exactly the places where the probability
becomes discrete.
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The proof is constructive. You can actually write out the random variable
X for which F is a distribution function.

Proof. Consider the probability space26 (Ω,F , P), where Ω = [0, 1], F is the
collection of Borel sets, and P is the Lesbesgue measure.

Define the values of the random variable X as follows:
Well, how would we do this if F were continuous and strictly monotone?

We think of the interval Ω = [0, 1] as the codomain of F . Then we define
X(ω) = F−1(ω), if F is one-to-one.

Why is this correct? If you ask the question that X ≤ a (that is, what is
the probability of (−∞, a], then we’ll have exactly [0, ω = F (a)].

You can rectify the situation in general by assigning

X(ω) = sup{y : F (y) < ω}

The exercise (in the homework) is to complete this proof.

This is a common way do generate random variables on a computer. You
start with a distribution function F , and then you can compute a random vari-
able X. First, you generate the probability (uniform) space Ω = [0, 1]. Then
you just apply the “inverse” of your distribution function.

6.2 Types of Distributions

There are three types of distributions:

1. Discrete

2. Continuous

3. Something wild (that’s not just a combination of the previous two).

6.2.1 Discrete Distributions

Let X be a random variable with the distribution function27 F (with the induced
probability P). The distribution of X (and X itself) is discrete if there exists a
countable set S such that

P(Sc) = 0.

So, the random variable can only take on a countable number of values with
certain probabilities. So, in other words, X takes a countable number of values
(S).

We can enumerate, by writing S = {x1, x2, . . .}, and we can look at pk :=
P(X = xk). Our random variable will take these values S with certain proba-
bilities, and that’s it. Then, we have

F (x) =
∑

k: xk≤x

pk,

26We’ll make this very complete
27We’ll study a random variable, from now on, through its distribution function F .
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and this is a sum over a countable set. These pk are sometimes called point
masses.
Here are some examples:

1. One point mass at zero:
P(X = 0) = 1.

So, the distribution function F is:

F (x) =
{

0 , x < 0
1 , x ≥ 0

This is sometimes called Dirac measure (at 0).

2. Any simple random variable is discrete. A simple random variable is a
random variable that takes finitely-many values. For example, the coin
toss example of the last lecture (where we have the four values) is a discrete
random variable.

3. Finally, there are “wilder” examples than this. For example, where the
set S of values is are all rationals: S = Q, where you have arbitrary
point masses summing up to 1, e.g. pk = 1

2k . Then, the function F is
discontinuous at every(?) point. (It is continuous at every irrational point
and discontinuous at rational points.)

The discrete random variables are the simplest examples of random variables.

6.2.2 Absolutely continuous distributions

This is on the complete other side of the scale. So, the distribution of X (and
X itself, sometimes people will say) is absolutely continuous if there exists f ,
called the density of X, such that

F (x) =
∫ x

−∞
f(y) dy for every x.

So clearly, f ≥ 0 is necessary, and the total mass of the density is one, that is:
∫ ∞

−∞
f(x) dx = 1.

• In particular, if f is continuous, then

F ′(x) = f(x),

that is, it is the derivative of a distribution function.

• Then, we can say

P(X ∈ (a, b]) = F (b)− F (a) =
∫ b

a
f(x) dx.

The meaning of the density is that it indicates the likelihood of X to be
“near” x.
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• Alternatively, we can start with a function f such that

f ≥ 0 and
∫ ∞

−∞
f(x) dx = 1,

and define the distribution function by the formula

F (x) :=
∫ x

−∞
f(y) dy.

(This is a distribution function indeed.)
Question: Little “f” (f) is the density?

– Answer: Yes, once the conditions listed are satisfied.

The basic example of the absolutely continuous random variable is the ex-
ample about the flight. This is the uniform distribution on [0, 1]. Its density is
a constant:

f(x) =
{

1 if x ∈ [0, 1]
0 otherwise

Then

F (x) =
∫ ∞

−∞
f(y) dy.

=






x , if x ∈ [0, 1]
0 , if x ≤ 0
1 , if x ≥ 1.

The example of uniform distribution is the delayed flight.

OCTOBER 26, 2007

There are three types of random variables (and distributions): Discrete, ab-
solutely continuous (where the random variable has a density), and something
that’s wild, which is an exceptional case. So, let’s finish the absolutely contin-
uous distributions. In this case,

F (x) = P(X ≤ x) =
∫ x

−∞
f(y) dy,

and we can compute the probability as

P (X ∈ (a, b]) =
∫ b

a
f(x) dx.

So, we see that f will be larger to show a concentration of probability for
appropriate points. So, our example is
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Example 6.8. Standard normal distribution on R. This is more convenient to
define using the density.

f(x) =
1√
2π

e−x2/2.

This is the familiar “bell-shaped curve.” There is no closed-form expression
for the distribution function F (x), other than saying that it is the value of the
integral. However, there are good estimates on F (x).

So, what is F (x)? You take an x ∈ R, and you have

F (x) =
∫ x

−∞

1√
2π

e−y2/2 dy

The biggest concentration for x will be at x. So, the complement to the
density 1− F (x) should be roughly proportional to e−x2/2 for large x.

So, then we can prove the following. The bound from above is used much
more than the bound from below:

Proposition 6.9. For all x,
(

1
x
− 1

x3

)
e−x2/2 ≤ 1− F (x) ≤ 1

x
e−x2/2

This inequality is way sharper (on the left) than I ever use.

6.2.3 Cantor Distribution, and other wild distributions

So here will be an example that doesn’t fall into the category of being mixtures
of the previous two types. These are usually considered on fractals.

So, let’s remember what is the Cantor set. Consider [0, 1]. Remove the
interval [13 , 2

3 ]. Then, from what remains, remove the middle set(s) again (on
the intervals that remain). You iterate this. What remains is called the Cantor
set. Call it C. It has lots of wild properties:

• The (Lesbesgue) measure of C is zero (i.e. C is a null set) and C is
uncountable28.

Now, that we’ve defined C, we can define the Cantor distribution, defined
using the distribution function. F (x) will be defined on [0, 1].

The values are given: F (0) = 0, F (1) = 1, and in the middle, F is = frac12.
That is, F (x) = 1

2 on x ∈ [ 13 , 2
3 ]. Then, we iterate. So F (x) = 1

4 on the interval
[ 14 , 2

9 ] and F (x) = 3
4 on [ 79 , 8

9 ]. And so on. You get sort of a “stair” shape in the
graph. Then, extend F on the interval [0, 1] continuously.

F is a self-similar function, and it is continuous. F is extended on to R be
setting F (x) = 0 for x ≤ 0 and F (x) = 1 for x ≥ 1. Now, some properties of F :

28So, we know that a countable set has measure zero, but this shows that the other way
does not hold. It’s easy to prove that C is measure zero. Wikipedia contains a pretty nice
proof that C is uncountable!
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1. F is continuous29

2. F is constant on “middle thirds,” so the derivative is constant there. But,
these are the intervals we excluded. So F is constant (rather F ′ = 0)
a. e. (on Cc).

Therefore, F is not discrete (by 1, and the intermediate value theorem30).
Further, F is not absolutely continuous (by 2).

Hopefully, in probability, we rarely come across such examples. In practice,
our distributions will be absolutely continuous or discrete.

So, this completes our discussion of types of distributions and examples.

7 Integration

Why do we need to talk about integration? It’s because of the unfortunate fact
that the expectation of a random variable X on a probability space (Ω,F , P)
needs to be defined by an integral.

Heuristically, the expectation is the average of the values of X on Ω. The
average is usually defined as some integral over Ω. In calculus 131, you defined
an average value, and it was an integral over some interval. So,

EX =
1

P(Ω)

∫

Ω
X(w) dP(w).

The problem, is that we do not have a definition of integral over arbitrary spaces
Ω. What is the integral

∫
Ω over Ω for an abstract sample space Ω.

So, we’ll quickly review the type of integration we already know, the Riemann
integral. This does not solve our problem, because it’s for R, but we’ll quickly
jump into other integrals (Lebesgue, etc.)

7.1 Riemann Integral

It is defined for a fnuction f : [a, b] → R. Partition the domain [a, b] into n
consecutive intervals ∆1, . . . ,∆n. Then,

∆k = (xk−1, xk].

We consider the Riemann sums

R(∆) =
n∑

k=1

f(tk)(xk − xk−1), (7)

where tk ∈ ∆k.
29CHECK
30Because it does not take all intermediate values.
31or maybe 2
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Then, this approximates the Riemann integral well, as you refine your par-
tition. How fine your partition is is quantified by the mesh, which is defined to
be

‖∆‖ = max
k

|∆k|.

Definition 7.1. The Riemann integral of f exists if there exists A such that

lim
‖∆‖→0

|R(∆)−A| = 0

for arbitrary portitions ∆ and tk. This limit A is called the value of the integral,
and we write

A =
∫ b

a
f(x) dx.

Theorem 7.2. If f is bounded and continuous a. e , then f is Riemann inte-
grable.

You’ve probably seen a stronger version of this theorem.
How many of you have heard about the Riemann-Stieltjes integral? It’s a

generalization of the Riemann integral, and it’s useful in probability theory.
Instead of defining Riemann sums as in (7) we assume that your partition is an
equi-partition. Then, we sum by the values of the function, multiplied by the
same number. But sometimes, it’s nice to introduce some weights (and debias
the function). So, instead of measuring the values uniformly, you weight the x
values.

Let F : [a, b] → R be a monotone function. Define the Riemann-Stieltjes
sums as

RS(∆) =
n∑

k=1

f(tk)(F (xk)− F (xk−1)

The result (for an analogous definition of integral) is called the Riemann-Stieltjes
integral of f and is written ∫ b

a
f(x) dF (x).

This notation is pretty justified, because if F is continuously differentiable, then
dF (x) will indeed equal F ′(x) dx:

∫ b

a
f(x) dF (x) =

∫ b

a
f(x) · F ′(x) dx.

Thus, with F = 1 constantly, this is the usual Riemann integral. For nice
functions f , adding this F doesn’t do anything. These increments (differences)
will pick up the jumps.

So, this is basically the Riemann integral.

39



7.2 Lebesgue integral

So, let me give you a heuristic idea. Once you know Lebesgue integral, you do
not need to know any other integral. Whenever you write this sign

∫
,

you can just think about the Lebesgue integral. It’s the most general thing you
need.

The Lebesgue integral is defined on an arbitrary measure space (Ω,F , µ).
For simplicity, we’ll assume that µ is a finite measure, i.e. µ(Ω) < ∞. This
assumption is not actually needed: you can get rid of it. It’s not a problem in
probability measures.

We can not just partition the domain (because it is abstract). So, we avoid
partitioning Ω. Instead, we partition R, the range. A function f : Ω → R is
much easier to partition in the range. The result is called the Lebesgue integral.
We have to know how to partition the range, but this is pretty much the same
thing. It will be harder to prove properties about the Lebesgue integral. So,
this is possible, but we will not define the Lebesgue integral this way.

Instead, we define Lebesgue integral by steps (four or so).

1. First, for indicator functions (where it’s simple)32

2. Then, we extend it for simple functions. These are linear combinations of
indicator functions.33

3. Third, for general functions (which, by the homework, every function can
be approximated), as the limit of integrals of simple functions.

OCTOBER 29, 2007

Let f be a measurable function on a measure space (Ω,F , µ) with finite
measure µ (i.e. µ(Ω) < ∞). We have a function f : Ω → R. Then, what is

∫
f dµ =?

So, we’ll do this in steps. Step zero is to define it on indicator functions. So,
if f = 1A, define ∫

f dµ = µ(A).

Here are the remaining steps:
32What should be the integral of such a set? Its measure.
33We extend, thus, by linearity.
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1. For simple functions

f =
n∑

k=1

ak1Ak

for some decomposition Ω =
⋃n

k=1 Ak, define

∫
f dµ =

n∑

k=1

akµ(Ak).

2. For bounded functions |f | ≤ M . (See Problem 2 of HW4). Here,w

(a) There is some simple functon fn → f pointwise.
(b) Define ∫

f dµ = sup
φ≤f

∫
φ dµ = inf

ψ≥f

∫
ψ dµ.

where φ, ψ are simple functions34.

3. Then, for non-negative functions f ≥ 0. Define
∫

f dµ = sup
0≤φ≤f

∫
φ dµ = lim

n→∞

∫
min(f, n) dµ.

where φ is bounded. The second equality35 is an alternative definition.
If this integral is finite, we’ll say that the non-negative function f is inte-
grable.

4. For general functions f , this is straightforward given step 3. We just look
at the positive and negative parts separately. So, we decompose f into its
positive part f+ and negative part f−

f = f+ − f−,

where f+ = max(f, 0) and f− = max(−f, 0).

Question: Doesn’t this make a function like sinx have integral unbounded?

• Answer: Yes, even more quickly so. But, this integral does not exist,
even in the Riemannian sense.

So, let’s make that point clear with a definition.
34We really want to use a limit of bounded variables, because then we can later say “trun-

cate.”
35This is a point-wise minimum of f and the constant function with output value n.
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Definition 7.3. 1. We call f integrable if |f | is integrable. Equivalently, if
both f+ and f− are integrable, and in this case,
footnoteThat is the the integral. Sometimes, we’ll denote this

∫

Ω
f dµ

to indicate the abstract space Ω., define
∫

f dµ =
∫

f+ dµ−
∫

f− dµ.

2. The integral on a measurable set A ⊆ Ω is
∫

A
f dµ =

∫

Ω
f · 1A dµ.

Then, with this definition, the properties of the Lebesgue integral are easy
to prove.

7.2.1 Properties of Lebesgue Integral

Proposition 7.4. 1. (Monotonicity). If f ≤ g almost everywhere, then∫
f dµ ≤

∫
g dµ.

If f = g almost everywhere, then the integrals are equal36.

2. (Linearity)
∫

(af + bg) dµ = a
∫

f dµ + b
∫

g dµ, where a, b ∈ R.

Proof. We’ll skip the proof, but it’s not difficult to prove this (as an exercise)
for simple functions.

Corollary 7.5.
∣∣∫ f dµ

∣∣ leq
∫
|f | dµ.

Why is this true? We have to check two inequalities.

Proof. Since f ≤ |f |, this implies
∫

f ≤
∫
|f+| dµ. Similarly, −f ≤ |f |, so

−
∫

f dµ ≤
∫
|f−| dµ.

This does not happen for Riemann integrals, right? Highly-oscillatory func-
tions are still non-integrable. So, with that, let’s compare integrals.

7.2.2 Comapring Lebesgue and Riemann integrals

So, what’s the punchline? Lebesgue integral is better. Whenever possible, you
should use this.

Theorem 7.6. If f is Riemann integrable, then f is Lebesgue integrable, and
the two integrals agree.

36Bascially, the integral over any set of mesasure zero will be zero.
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This is true at least on finite domains.
So, the Lebesgue integral is at least as good as the Riemann integral. How-

ever, the converse does not hold. For example,

Example 7.7. f = 1Q. This is a simple function37. Since Q is countable,
µ(Q) = 0. Therefore

∫
f dµ = 0. So, f is Lebesgue integrable.

But, f is not Riemann integrable. We’ll leave this as an exercise. It shouldn’t
be hard though. No matter where you look, independent of how fine your mesh
is, an upper sum will use 1s and a lower sum will use 0s.

One remark is ‘How to view step 2’ above. After the homework, you see that
you take simple function approximations by decomposing functions by range.

So you can rethink of step 2 as partitioning by range, instead of by domain.
So, the next step is to prove properties that hold in the limit.

7.2.3 Integration to the Limit

So, the main lemma that we’ll look at is as follows (Fatou’s Lemma).

Lemma 7.8 (Fatou’s Lemma). If fn ≥ 0, then
∫

lim inf fn dµ ≤ lim inf
∫

fn dµ.

As an exercise, you should show that the converse does not hold. Actually,
proving the converse is an easy way to remember Fatou’s lemma. Let’s try to
sketch the proof of this, at least for indicator functions.

Proof. The proof is by steps: for indicator functions, then simple functions, and
so on.

So for indicator functions. Let fn = 1An . Then,
∫

lim inf 1Ak dµ =
∫

1lim inf An dµ.

This was used in one solution of # 7 of HW 1. But then, we know that this is
equal to

= µ(lim inf An).

Our goal is to “pull the lim inf out, from the measure.“ And we have

µ(lim inf An) ≤ lim inf µ(An),

proved in class (and Theorem 3.2(i) in the text).
Then, we recall the definition. This is equal to

= lim inf
∫

1An dµ.

So, then it’s an exercise to show it’s true for simple functions. Use linearity.

37It was asked if this is simple. Indeed, we can use A1 is the rationals and A2 the irrationals.

43



From this, you can deduce certain properties. Consider the following prob-
lem:

Suppose fn → f . Is it true that
∫

fn dµ →
∫

f dµ?

It’s not true in general (exercise).

Theorem 7.9 (Monotone Convergence Theorem). If fn ≥ 0 and fn ↗ f , then∫
fn dµ →

∫
f dµ.

A similar statement is true for ↘. This is almost immediate from Fatou’s
lemma.

Proof. By Fatou’s Lemma,
∫

f dµ ≤ lim inf
∫

fn dµ

On the other side, each single fn,

lim sup
∫

fn dµ ≤
∫

f dµ

by the monotonicity and the property that each fn is smaller than f (fn ≤ f).
This completes the proof.

So, another time when a statement of this kind is true is when every function
is bounded by another function. This is the Dominated Convergence Theorem.

Definition 7.10. fn → f almost everywhere (a. e.) if µ{ω : fn(ω) /→ f(ω)} =
0.

Theorem 7.11 (Dominated Convergence Theorem). If fn → f a. e. and
|fn| ≤ g for all n, where g is integrable, then

∫
fn dµ →

∫
f dµ.

Proof. We apply a “shift” so that we can apply Fatou’s lemma. fn + g ≥ 0 for
all n. By Fatou’s Lemma,

∫
(f + g) dµ ≤ lim inf

∫
(fn + g) dµ.

Thus,
∫

f dµ ≤ lim inf
∫

fn dµ. Then, repeat the argument for −fn. This
completes the proof.
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OCTOBER 31, 2007

The Midterm will be posted today online, and due next Wednesday. No late
submissions. No collaboration. It is weighted higher. Unlike the HWs, I will not
be able to consult on it to give hints. This is similar to an actual in-class exam.
My office hours will be on Friday as usual, and I have to cancel office hours on
Monday. So, be sure the statements are clear by then. The TA still has office
hours on Tuesday. So, use any text that you want, but not a human. The TA
is not grading every single problem in the HW. I will post which problems have
been graded on each HW, so you will know what you can feel confident about.
Any questions?

Now, we’re finished with integration, and we can define expectation of ran-
dom variables.

8 Expectation

Let X be a random variable on a probability space (Ω,F , P). So X : Ω → R is
a measurable function.

Definition 8.1. The expectation (mean) of X is

EX =
∫

X dP =
∫

Ω
X(ω) dP(ω),

the usual Lebesgue integral.

So, you should think about expectation as an average value. But, this is
“weighted” according to the probabilities. There are many properties of the
expectation. The properties of the expectation follow from the properties of the
Lebesgue integral:

For example, the expectation is linear: E(aX + bY ) = aEX + bEY , and
the expectation of a constant random variable is a constant: E(const) = const.
Also, if X ≥ Y almost everywhere, then this implies EX ≥ EY . That’s the
monotonicity of the integral. You can rethink other properties of the integral
as problems, to see what properties you’d obtain.

For simple random variables, the expectation reduces to a simple sum. What
is this? Let

X = xk with probability pk, k = 1, . . . , n.

(Recall, X is a linear combination of indicators.) Then, the definition of Lebesgue
integral for simple functions gives

EX =
n∑

k=1

xkpk,

or more generally, we have
n∑

k=1

xkP(x = xk).
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So, a special case of the integral is the sum. As an exercise,

Exercise. Show that for discrete random variables,

EX =
∞∑

k=1

xkP(x = xk).

Question: Does the series converge?

• Answer: The series converges if it has expectation. For positive random
variables, you either have the expectation equal to ∞, or it’s finite. But
it can not oscillate. Maybe we’ll modify the exercise to:

Exercise. Show that for discrete random variables,

EX =
∞∑

k=1

xkP(x = xk), (8)

if the series is absolutely convergent.

As an example, let’s consider:

Example 8.2. Let X be the number of heads in 2 tosses of a fair coin. Recall

X =






2, probability 1
4

2, probability 1
2

0, probability 1
4

We had this somwhere. So the expectation is to sum up these values with these
weights:

EX = 2 · 1
4

+ 1 · 1
2

+ 0 · 1
4

= 1.

This is what you should expect. In two tosses, you should get one head.

This example is great, because it shows: You only need values and the
probabilities of these values, but you do not need to know which points go to
which values. So for example, the random variable for the tails will have the
same distribution. It will be the compeletly “opposite” random variables, but
the expectation will be the same. It doesn’t matter what the values of X signify.
So, the somewhat-nontrivial theorem is:

Theorem 8.3. Distribution determines expectation. That is, X
d.= Y implies

EX = EY .

This is good for us. The distribution does not deal with the sample space.
It’s good to know that the expectation can be proved without knowing the
sample space. We’ll see how this is useful for us later. The proof proceeds in
steps, much like some of the other recent proofs.
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Proof. First, we prove this (Step 1) for simple random variables X and Y . In
(8), there is no mention of the sample space. So, this follows from the form of
the expectation of X and the expectation of Y , as seen in (8).

Step 2, for bounded random variables: Let X ≥ 0, Y ≥ 0, with X ≤ R, Y ≤
R. By Problem 2 of HW4, there exist Xn ≥ 0, Yn ≥ 0 simple random variable
that converge Xn ↗ X, Yn ↗ Y point-wise. (Remember how to do this? So,
we partition the range into equal intervals.) Then Xn

d.= Yn. So, by Step 1,
EXn = EYn, the expectations agree. It’s only left to say that they actually
approximate the EX. So, why does EXn → EX? They converge point-wise,
right? You have to use some limit theorem. It’s not always true that point-
wise convergence implies convergence of the integral. We can use dominated
convergence theorem (or monotone convergence theorem). Let’s say “CHECK”,
. . . it’s a nice exercise. By the Monotone Convergence THeorem,

EXn → EX, EYn → EY,

because Xn ≥ 0, Xn ↗ X.
Step 3 is for non-negative (but not necessarily bounded) random variables

X ≥ 0, Y ≥ 0. But this is easy. We can say

EX = sup{EX ′ : X ′ ≤ X and X ′ is bounded},

or we can write some truncation instead of X ′. (The supremum exists by hy-
pothesis.) So, we can use step 2, and similarly for Y . By Step 2, these suprema
are equal.

In step 4, we have general X and Y , and we decompose

X = X+ −X−, Y = Y + − Y −.

We use a little bit of thinking to show that

X
d.= Y implies X+ d.= Y + and X− d.= Y −.

Check this property: It makes sense that X and Y which are equal up to
distribution share positive parts and negative parts (up to a null set). Then, we
use Step 3 on the positive and negative parts, respectively.

But this is not good enough. What would be good enough is if we could
discuss expectation with an integral, NOT over Ω, but over R. So, how do we
do this? We think about induced R probability spaces. This change of variables
changes our integral to an integral over R.

8.1 Change of Variables

We want to compute expectation by integrating over R, and not Ω. To do this,
we use the induced probability measure P on R. The measure is defined as
follows:

P (A) = P(X ∈ A), A ⊂ R Borel
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defined on every Borel set A. What this means, in particular, is that we can
cook up another random variable which will be a map (not from Ω to R, but)
from R to R. In particular, the “identical” random variable assigning x 4→ x on
R equals X is distribution. It is clear that this is a random variable: the identity
is measurable. But this random variable is equal to the random variable X (in
distribution).

Therefore, by Theorem 8.3,

EX =
∫

R
x dP.

And more generally, the expectation of a function g(X) is

Eg(X) =
∫

R
g(x) dP.

Check this: it’s the same concept. The random variable is defined as you think
it should be.

Now things will become easier in a very great speed. Because, the dP is the
rate in which our measure changes. And the rate in which our measure changes
is the speed of these “jumps” in our probability. So, the proposition we will not
prove is

Proposition 8.4 (Lebesgue to Riemann-Stieltjes).
∫

R
x dP =

∫

R
x dF (x),

where F is the distribution function of X. More generally,
∫

g(x) dP =
∫

R
g(x) dF (x).

For simple random variables, this should be easy. For F a piecewise-constant
function dF is only non-zero at a finite collection of points. As an exercise, prove
this proposition for simple random variables. Once you prove it for simple
random variables, it holds in general due to some limit theorems.

The outcome of this is this theorem, very very useful.

Theorem 8.5 (Change of Variables).

EX =
∫

R
x dF (x)

and more generally,

Eg(X) =
∫

R
g(x) dF (x).
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This gives you a hands-on formula for computing distributions/expectations.
If X is discrete, then the theorem is not very useful. It doesn’t make sense to
take integration in this case, when we already have everything in terms of sums.
The formula is very useful if X is absolutely continuous. Then, the theorem is
useful, and it gives the following formula:

EX =
∫

R
f(x) dx,

where f = dF is the density function of X. And more generally,

Eg(X) =
∫

R
g(x)f(x) dx. (9)

Heuristically, you should think of this formula (9) is you average over all
values of g(x) with this weight f(x). If we just had dx, the f(x) shows that it
must prefer some values over another.

The interesting thing to do here in (9) is to integrate by parts. So, the
corollary to this theorem is

Corollary 8.6. If X ≥ 0, then

EX =
∫ ∞

0
P(X > x) dx,

and more generally,

Eg(X) = g(0) +
∫ ∞

0
P(X > x) dg(x).

We’ll prove it next time (using integration by parts). If you know something
about the distribution, we talk about tails P(X > x). If the tails decay fast,
then there’s no weight around the “ends.” For example, we can use this on
the Gaussian random variable. Then, we can ask what is the likelihood of the
random variable outside of some range.

NOVEMBER 2, 2007

We’ll work expectation a little bit more. For a random variable X with a
distribution function F ,

EX =
∫

R
x dF (x).

Note, dF (x) is a function, so this is Riemann-Stieltjes integral. And if X has
density f (that is, X is absolutely continuous), then

EX =
∫

R
x f(x) dx
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can be computed by this standard (Riemann) integral. The moment that you
see

EX =
∫

R
x dF (x),

you should think about integration by parts. So, this wil be the corollary that
we just stated:

Corollary 8.7. Let X ≥ 0 be a random variable38. Then,

EX =
∫ ∞

0
P(X > x) dx,

and more generally, you can do the same for a function of a random variable:

Eg(X) =
∫ ∞

0
P(X > x) dg(x) + g(0).

Proof. For the proof, we’ll use integration by parts for Riemann-Stieltjes integral
(it has the same form as for Riemann integrals). So, the formula is

∫ b

a
G(x) dF (x) = G(x)(Fx)|ba −

∫ b

a
F (x) dG(x).

The problem is we have an infinite range integral. In what range is the
integral going to be zero? For negative values of x, certainly. If you have any
arbitrary bounded random variable, then the distribution is zero outside of a
range: Note, for bounded random variables, say X ∈ [a, b],

EX =
∫ b

a
x dF (x).

This is because F (x) = constant outside the range [a, b]. So, this is how we
reduce this integral. But, we know that an arbitrary random variable is approx-
imated by bounded random variables.

1. Reduction to Bounded random variables (by truncation). We consider
the random variable XR = min(X, R). So XR is a non-negative random
variable (when R ≥ 0), and XR ↗ X pointwise. This is the setting of
one of the theorems (Monotone Convergence Theorem). The MCT yields
EXR → EX.
The distribution function FR(x) of XR is

FR(x) =
{

F (x), x < R
1, x ≥ R.

(10)

38It’s just convenient to state it for non-negative random variables. It’s not that you can’t
state it for other random variables.
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Now, we can compute

EXR =
∫ R

0
x dFR(x)

almost=
∫ R

0
x dF (x).

This concludes the first step: Everything became the same except the
range became finite.

2. Now we integrate by parts:

EXR = x FR(x)|R0 −
∫ R

0
FR(x)

By (10), we know the value of FR at the endpoints:

= (R · 1− 0 · 0)−
∫ R

0
F (x) dx =

∫ R

0
(1− F (x)) dx =

∫ R

0
P(X > x) dx.

and we know that this →
∫∞
0 P(X > x) dx, as R →∞.

This completes the proof.

These issues about the infinite ranges may cloud issues a bit, but the heart
of the proof is in the integration by parts.

These are some exercises to see how this is applied.

8.1.1 Exercises

1. Uniform random variable on [0, 1]. The density is

f(x) =
{

1, x ∈ [0, 1]
0, otherwise.

(An example is the delayed flight.)
Let’s compute the expectation. In this case, we know the density function
f , so we don’t integrate by parts:

EX =
∫ ∞

0
x f(x) dx =

∫ 1

0
x dx =

x2

2
|10 =

1
2

2. Standard normal random variable. The density was

f(x) =
1√
2π

e−x2/2

for all x. Then, the expectation is

EX =
1√
2π

∫ ∞

−∞
xe−x2/2 dx

The integrand is an odd function, so the integral is zero.
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3. More generally, for symmetric random variables.

Definition 8.8. We call a random variable X symmetric if X
d.= −X. In

words, P(X ∈ [a, b]) = P(X ∈ [−b,−a]).

The standard normal random variable is symmetric. The density function
f of a symmetric random variable is even. Then x × f(x) is odd, so
the expectation is zero (assuming EX exists). (Prove this for general
symmetric X, without assuming it has a density function f .)39

4. Exponential random variable X with parameter λ > 0. It has the distri-
bution function

F (x) =
{

1− e−λx, x ≥ 0
0, x < 0.

(11)

We can apply Corollary 8.7. We get

EX =
∫ ∞

0
(1− F (x)) dx =

∫ ∞

0
e−λx dx =

1
λ

.

9 Variance

Every random variable has two parameters. One is expectation. The other is
variance.

Definition 9.1. The variance of X is var(X) = E(X − EX)2.

The variance of X measures how spread the values of X are. It shows the
“typical distance” to the center of the distribution. We also define the standard
deviation of X:

st.dev(X) =
(
E(X − EX)2

) 1/2
=

√
var(X).

The standard deviation of X shows how far X is typically from its mean.

Proposition 9.2. var(X) = EX2 − (EX)2

Proof. var(X) = E(X−EX)2 = E(X2−2XEX+(EX)2) = EX2−2(EX)(EX)+
(EX)2 = EX2 − (EX)2.

Proposition 9.3 (Dilation / Translation). 1. var(X + b) = var(X).

2. var(aX) = a2 var(X).

Proof. Exercise.
39We could actually do example 1 here, by shifting the function.
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Corollary 9.4 (Normalization). Let X be a random variable with mean40 µ
and variance σ2. So, we have a general random variable X. Now, we want to
create a standard random variable (with mean 0 and variance 1). How do we
do this? First, we create mean 0, by shifting:

X − µ

Now, to get the variance to be 1, we divide by σ.

X − µ

σ
.

This random variable has mean 0 and variance 1.

Example 9.5. 1. Uniform random variable on [0, 1]. What does it take to
compute the variance? We need to know the mean EX, and we need to
know the mean of X2 (by the proposition). We already have computed the
mean as 1

2 . Now, we need to compute the expectation of X2. we do it by
the usual formula:

EX2 =
∫ ∞

−∞
x2 f(x) dx =

∫ 1

0
x2 dx =

x3

3
|10 =

1
3
.

So then the variance is var(X) = 1
3 −

(
1
2

)2 = 1
12 . Then, the st.dev(X) =

1√
12
≈ 0.29.

2. Standard normal random variable. We already know EX = 0. The expec-
tation of X2? We apply the same formula:

EX2 =
∫ ∞

−∞
x2 f(x) dx =

1√
2π

∫ ∞

−∞
x2e−x2/2 dx = 1.

Then var(X) = 1 = st.dev(X).

3. General normal random variable Y = σX + µ. Now Y has mean µ and
variance σ2, be the proposition. The density of Y is

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
.

This distribution is denoted N(µ, σ2). (N for normal.)

NOVEMBER 5, 2007

One announcement. So there will be no office hour today. I think we’ll
work out an example with a specific distribution of how to compute the ex-
pectation and variance. We’ve worked with uniform, standard normal, normal,
exponential (HW4 Exercise) distributions.

40Expectation of X is mean of X
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9.1 Bernoulli Distribution

We’ll do now some examples of discrete distributions. The simplest example
is the Bernoulli distribution with parameter p41. Here X ∈ {0, 1} given by the
probability P(X = 1) = p and P(X = 0) = 1− p.

An example of a Bernoulli random variable is a coin toss. In the coin toss,
X = 1 if H and X = 0 if T . In this case, if the coin is fair, then the parameter
p = 1

2 .
Recall that for discrete random variables X, the expectation is just the series,

where the series is over all values that it can take, with weight:

EX =
∑

k

xkP(x = xk).

In our case, EX = 1 · p + 0 · (1− p) = p. To compute the variance, we use the
formula var(X) = EX2 − (EX)2. We first compute

EX2 =
∑

k

x2
kP(X = xk)

to get EX2 = 12 · p + 02 · (1− p) = p. So, the variance is the difference

var(X) = p− p2 = p(1− p). (12)

In particular, st.dev(X) =
√

p(1− p), and you can think of this as a geometric
mean. For a fair coin, st.dev(X) = 1

2 . That’s what you should expect, because
the mean has to be the center. The deviation is always 1

2 , so the standard
deviation is 1

2 . This is the simplest example.

9.2 Binomial Distribution

The next simplest example is the Binomial Distribution with parameters (n, p).
Assume we perform n independent trials, with the probability of success in each
trial equal to p. So the random variable X will be the number of successes. X
is then called a Binomial random variable (with these two parameters).

The example is the number of heads in n independent tosses of a fair coin.
Here, p = 1

2 . The Binomial distribution is a little more complicated, because
as opposed to the Bernoulli distribution, X ∈ {0, 1, 2, . . . , n}. To compute its
parameters like expectation and variance, we need to compute the distribution.
How do you compute P(X = k), the probability of k successes? How many ways
are there to find k successes among n trials?

(n
k

)
.

P(X = k) =
(

n

k

)
pk(1− p)n−k.

(We have to compute the probability of each of the
(n

k

)
times as k successes and

n−k non-successes. So, we have a formula. This is bad, because of the algebra.
41Sometimes, people take Bernoulli random variables with values ±1, but there are two

conventions.
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So, here’s how we’ll do this. We’ll have a sum of random variables. Then, the
expectation becomes a simpler problem, because of the linearity of expectation.

We will represent X as a sum of random variables

X =
n∑

j=1

Xj

over all of the trials j, where

Xj =
{

1 if success in j-th trial
0 otherwise

Then every Xj is a Bernoulli random variable with parameter p. That’s good,
because then we know the expectation of every Xj .

EXj = p.

Then, we just use the linearity of expectation. We get

EX =
n∑

j=1

EXj = np.

We haven’t used independence, actually. This is a good example that you can
sometimes to probability theory without independence. So, this holds also for
arbitrary trials. You should still expect the same for dependents.

Let’s go for the variance now. We have to compute EX2. Again, we do not
want to use the distribution (with its wild binomial coefficients). So, to simpify,

EX2 = E




n∑

j=1

Xj




2

= E




n∑

j=1

X2
j +

∑

i *=j

XiXj



 .

We again use the linearity of expectation, which allows us to move the expec-
tation inside, so the problem reduces to computing the expectations of these
individual terms.

The first type of term is easy: EX2
j = EXj = p, so this was easy. But what

about E(XiXj)? Each of them is either zero or one, so the product is zero or
one. When is it 1? This is when we have both:

XiXj =
{

1 if success on i and j
0 otherwise

By independence, P(successes in i and j) = p2 =⇒ EXiXj = p2. So, now,
we have everything we need:

EX2 = n · p + (n2 − n) · p2.

Then, the variance is

var(X) = np + (n2 − n)p2 − (np)2 = np− np2 = np(1− p).
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Now a little surprise here. The variance of Xj was p(1− p), by (12). We see
that

var




n∑

j=1

Xj



 =
n∑

j=1

var(Xj)

This is not an accident. This always happens for indpendent Xj . We will show
this later, and it would have allowed us to circumvent all of this calculation.
Then st.dev(X) =

√
np(1− p). For a fair coin, =

√
n

2 .

Corollary 9.6. The difference between the number of heads and tails in n
independent tosses of a fair coin is

√
n (typically).

For example, if you have 100 tosses, you should expect a difference of 10. If
you increase n, then the portion of difference, the proportion will go to 0. So,
this predicts the rate at which.

9.3 Poisson Distribution

This is one of the remarkable distributions in probability that does not come
up naturally. The other is the standard normal. This is a limiting law. The
random variable X is a Poisson random variable with parameter λ if:

• X ∈ {0, 1, 2, . . .}.

• P(X = k) = e−λ λk

k! k = 0, 1, 2, . . ..

This strange distribution is explained by the fact that the Poisson distribu-
tion is a good approximation of the Binomial distribution, with parameters n
and p, for λ = np.

The approximation is good (this is important) if n is large while the mean
np is moderate. We have very many trials, like 1000 trials, for example. But
you expect only 5 of them to be successful. In particular, if you let n go to
infinity but let np stay constant, then this is the setup.

What do we mean by large? We should see the proof of this. n = 20 is large
and p = 0.05 (thus np = 1). Let’s do the proof, since it’s very easy.

Proof. Let Y be Binomial with parameters n and p. We want to approximate

P(Y = k) =
(

n

k

)
pk(1− p)n−k =

n!
k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k

Here, we want to see λk/k!. So we isolate this, and we estimate the rest:

=
λk

k!
+

n(n− 1) · · · (n− k + 1)
n · n · · ·n

(
1− λ

n

)n

·
(

1− λ

n

)−k

,

The third term (e−λ) is good to keep. For the second factor, the ratio is ≈ 1.
Finally, if k is constant, then the fourth factor is ≈ 1. Thus, P(Y = k) ≈
e−λ λk

k! .
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The Central Limit Theorem will take over if np is large. The Poisson distri-
bution is often used for “n = ∞”. This is not a rigorous thing. But, if n goes
to infinity, and the number of successes is to remain constant (accidents occur
with fixed average rate λ in number of occurances per unit of time), then the
Poisson distribution measures how many accidents occur in a unit interval of
time. (n plays no role in the final formula, because there is no n in the end.)
There is a big history of this Poisson distribution and how it is used. I like
Wikipedia. Wikipedia has a good article on Poisson distributions.

Okay, so the expectation of X. Again, this is a sum

EX =
∞∑

k=0

ke−λ λk

k!
= e−λ

∞∑

k=1

λk

(k − 1)!
= e−λλ

∞∑

k=1

λk−1

(k − 1)!
= λ.

To compute EX2, we compute EX(X − 1), because that will allow us to do
the same trick as before. Namely, pull e−λ outside.

EX(X − 1) =
∞∑

k=0

k(k − 1)e−λ λk

k!
= e−λ

∞∑

k=2

λk

(k − 2)!
=

= e−λλ2
∞∑

k=2

λk−2

(k − 2)!
= λ2

But, we didn’t compute EX2, we computed EX(X − 1), but now can just
subtract. So, EX2 − EX = λ2, thus EX2 = EX + λ2 = λ + λ2. So var(X) =
(λ + λ2)− λ2 = λ, and st.dev(X) =

√
λ.

Go check out the Wikipedia page!

NOVEMBER 7, 2007

How was the exam? Did anybody have success on the bonus problem?
Usually, when you have this something starts to be bad at p = 2, zzz.

We’ll now do the first real probability inequality.

10 Markov’s and Chebychev’s Inequalities

If we know the tails P(X > x) of a random variable X ≥ 0 for every x, then we
know the expectation. Then we can compute the expectation. We know this
is EX =

∫∞
0 P(X > x) dx. So if you know how a probability settles down for

large values of X, then you know the expectation42.
Very often we have the converse problem. What if we know EX, and want to

compute the tails P(X > x). Sometimes, the expectation is easier to compute
than the tail (for example, in the binomial distribution). The tails for binomial
distributions is not easy to compute.

42Yes, this is for positive random variables. We know what to do with negatives.
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One bad thing and one good thing: First, we can not compute it exactly.
If you only know X ≥ 0 and EX, then it may be a Gaussian random variable
(which settles down really fast) or it may be a “heavier” random variable in the
tails. But, we do have two inequalities. The first is Markov’s inequality. It is
not sharp, but it is useful in many cases.

Theorem 10.1 (Markov’s Inequality). Suppose X ≥ 0 is a random variable.
Then,

P(X > x) ≤ EX

x
for all x > 0. (13)

So if you think of the expectation is a constant, we can say that the tail is
“below” 1

x . So, we know this is true for Gauss.
In particular, with probability at least 1

2 , the random variable X does not
exceed 2EX. Just let x = 2EX.

Let’s make a picture. It’s not needed for the formal proof. Think of Ω =
[0, 1]. For every ω, we graph X(ω). Then we do a truncation of X at x. So, we
want to estimate the interval I = {X ≥ x} of [0, 1]. We define a new random
variable Y which will take value x in I and 0 otherwise.

The area under the whole graph is EX. The little box is EY . So EX > EY .

Proof. Define Y := x1{X≥x}. First, we say that Y ≤ X pointwise. (simple, just
consider the two cases: when X ≥ x and X < x.) Therefore,

EY ≤ EY. (14)

EY = x · P(X ≥ x).. (15)

Then (14) and (15) imply Markov’s inequality.

Sometimes people say: 1
x is good, but not really good, because we cant

integrate this. One happens when we integrate both sides of (13)? On the left,
we get expectation. On the right, we have EX times a non-integrable function.

There is a fix to this problem.

Theorem 10.2 (Chebychev’s Inequality). Suppose X ≥ 0 is a random variable,
and p > 0 (usually 1). Then

P(X ≥ x) ≤ EXp

xp
for all x > 0. (16)

So that fact that Xp has expectation is a stronger requirement than X has
expectation. If you increase p, it will be harder for Xp to have expectation. But
in the end, you will be rewarded with an integrable right hand side.

The proof is an easy reduction to Markov’s Inequality.

Proof. P(X ≥ x) = P(Xp ≥ xp) ≤ EXp

xp , by Markov’s inequality.

Remark 10.3. This power p is not important in this proof. You can have an
arbitrary increasing function.
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We use this a lot.
One corollary to Chebychev’s inequality is:

Corollary 10.4 (Variance). Suppose X is a random variable with mean µ and
variance σ2. Then

P(|X − µ| ≥ tσ) ≤ 1
t2

for any t > 0. (17)

While Chebychev’s says something about expectation, the corollary will say
something about the variance. As soon as we know that the random variable is
smaller than average, we can say that the value is small (with high probability).
Here, we say something about the variance. Suppose X has a small variance
σ2. What is the probability that x will be far away from its mean?

You can say with high probability that x is; close to its mean. The proof is
simple by Chebychev’s inequality

Proof. Use Chebychev’s Inequality for the random variable |X − µ| ≥ 0. Then
we obviously will set x = tσ and p = 2. Then E|X − µ|2 = σ2, and we have by
Chebychev’s inequality,

P(|X − µ| ≥ tσ) ≤ σ2

(tσ)2
=

1
t2

.

In particular, for t =
√

2, every random variable X with variance σ2 is within√
2 · σ from its mean, with probability ≥ 1

2 . So every random variable is close
to its mean, and the units are (so to speak) the standard deviation.

The next section, we’ll try to understand what happens with more than one
random variable. This is a big section on independent random variables.

11 Independent random variables

Recall that before this, we only had independent events. The first thing to
understand is the joint distribution, as a way to handle more than one random
variable at once. This is familiar from last lectures.

Suppose X1, . . . , Xn are random variables. We will look at them jointly as a
random vector X = (X1, . . . , Xn). So again, X(ω) = (X1(ω), . . . , Xn(ω)) ∈ Rn.
(It is clear why this is called a random vector: it’s like a random point in space.)

As before, the random vector X induces a distribution P on Pn. Recall, we
assigned

P (A) = P(X ∈ A)

for a Borel set A in R. We do the same thing. We assign

P (A) = P(X ∈ A) (18)
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for a Borel set A ⊆ Rn. The P in (18) is called the joint distribution of random
variables X1, . . . , Xn.

What did we do? We said, this is a good thing, but there’s too many sets.
So, we focused on sets X ≤ x. Similarly to the case of random variables,
the joint distribution, the joint distribution is determined by half-infinite boxes
{X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn}. Namely,

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn), (19)

the joint distribution function of X1, . . . Xn. We didn’t really do anything that
we haven’t already done.

Similarly to random variables, the joint distribution is absolutely continuous
if ∃ f : Rn → R, called the joint density of X1, . . . , Xn, and such that

FX1,...,Xn(x1, . . . , xn) =
∫

y≤x
f(y1, . . . , yn) dy. (20)

Here, {y ≤ x} := {y ∈ Rn : y1 ≤ x1, . . . , yn ≤ xn}. Then,

P(X ∈ A) =
∫

A
f(x) dx for Borel set A ⊆ Rn.

The application of this is that now we can define independence. We have to
know how to look at two random variables at once.

11.1 Defining independence of random variables

Let’s go back to the case of events and recall that events A,B are independent
if

P(A ∩B) = P(A) · P(B).

We call random variables X, Y independent if43

P(X ∈ C, Y ∈ D) = P(X ∈ C) · P(Y ∈ D)

for all Borel sets C,D in R.
Question: Is this the same thing as the expectations the same? zzz

• Answer: It’s not the same, but it will be if ... zzz. Those are called
uncorrelated.

In other words, what we just wrote here are that the events {X ∈ C} and
{Y ∈ D} are independent. The collection of {X ∈ C} is an induced σ-algebra.
So, equivalently, σ(X) and σ(Y ) are independent.

The general definition (for more than two random variables is):
43if the fact that X takes on a specific value is independent of Y taking another value.

Those are two events. Therefore, we define the independence of variables by independence of
events.
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Definition 11.1. Random variables X1, . . . , Xn are independent if

P(X1 ∈ B1, . . . , Xn ∈ Bn) = P(X1 ∈ B1) · · · · · P(Xn ∈ Bn)

for every Borel sets X1, . . . , Bn in R.

Question: Do we need to say for every subsets?

• Answer: Actually no. Why, because we can just choose B1 to be the full
line, for example. So the definition differs in that we do not talk about
different subsets (because we can handle them by allowing the appropriate
Bi to be the full line).

So equivalently (to Definition 11.1), σ(X1), . . . , σ(Xn) are independent.

Example 11.2. Let X and Y be two independent random variables in [0, 1].
Then, we can compute

P
(

X ≤ 1
2
, Y ≤ 1

2

)
= P

(
X ≤ 1

2

)
· P

(
Y ≤ 1

2

)
=

1
2
· 1
2

=
1
4
.

There are too many Borel sets, so this is not a practical way to verify inde-
pendence!

11.2 Verifying Independence

We can check just on generators (half-intervals).

Theorem 11.3. X1, . . . , Xn are independent if and only if

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · · · · P(Xn ≤ xn)

for every x1, . . . , xn ∈ R.

Proof. (=⇒) trivial.
(⇐=) Recall the theorem on October 12th: namely, Theorem 3.8.
We use Theorem 3.8 for A = {sets of the form {X ≤ x}, x ∈ R}, and

B = {sets of the form {Y ≤ y}, y ∈ R}. We know these are independent, by
assumption, and closed under intersection (because they are half-intervals).

Finally, σ(A) = σ(X) = {sets {X ∈ A}, Borel A}, and same for σ(B). So
σ(X), σ(Y ) are independent.

NOVEMBER 9, 2007

Here, we will assume the f and g that follow are measurable.

Proposition 11.4. If X1, . . . , Xn are independent, then f1(X1), . . . , fn(Xn)
are independent.
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For example, if X, Y are independent, then X2, Y 2 independent.

Proof. First, observe

P(f1(X1) ∈ B1, . . . , fn(Xn) ∈ Bk) = P(f1(X1) ∈ B1) · · ·P(fn(Xn) ∈ Bn). (21)

fk(Xk) ∈ Bk is equivalent to Xk ∈ f−1(Bk).
Use this in (21) =⇒

Remark 11.5. All of the above (definition and results on independent) are true
for random vectors.

Corollary 11.6. If X1, . . . , Xn, Y1, . . . , Ym are independent random variables,
then f(X1, . . . , Xn) and g(Y1, . . . , Ym) are independent.

Why is this immediate? It’s not. It is if you think of random vectors.

Proof. Consider random vectors X = (X1, . . . , Xn), Y = (Y1, . . . , Ym). Apply
the proposition for two f(X), g(Y ).

(So, the usual way people state this is: If X1, . . . , X2n are independent, then
X1 + X2 + · · ·Xn and Xn+1 + · · ·X2n are independent.)

How can we consider tossing a coin and rolling a dice at the same time? These
are defined in different probability spaces. In this definition of independence,
we assume they are defined on the same probability space. Is there a way to do
this? We usually combine these things by studying product spaces.

12 Product Probability Spaces

The product probability space will allow us to combine different probability
spaces into one space (such as throwing a coin and rolling a dice), and also, this
will allow us to construct independent events and random variables. This is the
goal, and it’s easily achieved.

We just consider (for simplicity), just two different probability spaces. THe
construction is easily generalized to more than two.

Consider two probability spaces (Ω1,F1, P1) and (Ω2,F2, P2). We are going
to define their product (Ω,F , P).

The simplest thing is to define the product of the Omegas:

Ω := Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}.

So far, there is no structure. This is just a set.
As an example, consider Ω1 = [0, 1] and Ω2 = [0, 1]. Then Ω is the square

[0, 1]2.
Why don’t we take

F = F1 ×F2?

This won’t have things such as circles. So,

F /= F1 ×F2.
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So, let
A = {A1 ×A2 : A ∈ F1, A2 ∈ F2},

and let F := σ(A). Then you do have circles.
There is also a twist in how to define the measure P. We define the measure

P(A1 ×A2) = P1(A1)× P2(A2) for A1 ∈ F1, A2 ∈ F2

Think of boxes.
We define the measure P on the boxes first, and then we extend it (since

P was defined on a collection of generators). It can be uniquely extended, but
this is not a trivial fact (called the Caratheodory’s Extension Theorem). This
theorem is one-half of the construction of Lebesgue measure. Why is it non-
trivial? Apply it to intervals in the plane. For shorthand, we write P1 × P2 for
P.

Then, the product space (Ω,F , P) is defined.

Example 12.1. The product of [0, 1] and [0, 1] is [0, 1]2 with Lebesgue mea-
sure44.

Question: It seems like we got independence for free.

• Answer: Yes, because we defined our measure the way that we did.

This way, we define independence for events. So I’ll just mention one pow-
erful result. You’ve probably heard of it.

Remark 12.2. We never used the fact that these are probability spaces. The
construction holds for arbitrary measure spaces, in which P(Ω /= 1.

Theorem 12.3 (Fubini’s Theorem). If f(ω1, ω2) is integrable on a product space
Ω1 × Ω2 with product measure µ = µ1 × µ2, then

∫

Ω1×Ω2

f dµ =
∫

Ω1

(∫

Ω2

f dµ2

)
dµ1 =

∫

Ω2

(∫

Ω1

f dµ1

)
dµ2.

This double integral is equal to the iterated integrals.
Random variables can be dependent or independent. Regardless of that,

they have a joint distribution. The joint distribution will tell you about that
phenomenon. So, let’s understand the joint distribution of independent random
variables.

13 Joint Distribution of Independent Random
Variables

Just from the definition of the independence (just the fact that the probability
factors into a product), we see that a joint distribution function

F(X1,...,Xn)(x1, . . . , xn) = FX1(x1)× · · · × FXn(xn),
44two-dimensional
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so the distribution function factors into a product of previous distribution func-
tions.

Theorem 13.1. The random variables X1, . . . , Xn are independent if and only
if their joint distribution P on Rn is the product of the distributions Pk of Xk

on R.

Thus, the only way random variables can be independent is when they are
defined in a product space. The product space is the only way to think about
independent random variables.

Proof. In the =⇒ direction, by the uniqueness theorem of measure theory
(measure uniquely defined on the boxes), it is enough to check that P (A) =
(P1 × · · · × Pn)(A) for A ∈ A.

As we know, every A ∈ A has the form A = A1 × · · ·An, where Ak is Borel.
Then, by independence,

P (A1 × · · ·An) = P((X1, . . . , Xn) ∈ A1 × · · · ×An

= P(X1 ∈ A1, . . . , Xn ∈ An)
= P(X1 ∈ A1)× · · · × P(Xn ∈ An)
= P1(A1)× · · · × Pn(An).

In the other direction (⇐=), from last lecture, to check independence of
X1, . . . , Xn, it is enough to handle half-intervals. Namely, if

P(X1 ≤ x1, . . . , Xn ≤ xn)

factors, we are done. But this (def of joint distribution) is

P ((−∞, x1]× · · · × (−∞, xn]).

By the assumption, we know this factors:

= P1(−∞, x1]× · · · × Pn(−∞, xn]
= P(X1 ≤ x1)× · · · × P(Xn ≤ xn).

And so we are done.

The moral of today’s lecture is: The only way to work with independence is
to work through product spaces.

NOVEMBER 14, 2007

From last time:

Theorem 13.2. Random variables X1, . . . , Xn are independent ⇐⇒ their joint
distribution P (on Rn) is the product of distributions Pk of Xk (on R).
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Professor Vershynin is away, so that’s why zzz. What you started doing at
the end of last time: here is a theorem about random variables. It’s not part of
the definition of it, but it’s proved from the definition of it. It says that Random
variables X1, . . . , Xn are independent if and only if their joint distribution P
(on Rn) is the product of distributions individual distributions.

Let’s start with a corollary:

Corollary 13.3. Given arbitrary probability measures P1, . . . , Pn on R, there
exists independent random variables X1, . . . , Xn with distributions P1, . . . , Pn.

So this is an existence theorem.

Proof. Let P = P1×· · ·×Pn be the product probability measure on Rn. Every
probability measure on Rn is a distribution of some random variable. So you
have to produce a random variable (or really, random vector). How will we
define it? Take the probability space to be ... what? Okay, so now we have
to think a little bit. We need a triple (Ω,F , P). Take the probability space
(Ω,F , P) to be (Rn,B(Rn), P ). So, that’s the probability space. Here, B sounds
for the Borel σ-algebra.

So now, we need to define a random variable X which is a function of this
set. What will the values of X(x) be? What is going to be the image of a point
x for this to work? Any guesses? Yes X(x) = x. This is a well-defined function
from your probability space, which is Rn. It’s defined on the correct probability
space, and defined into the correct codomain space.

Now, let’s check? We have P (X ∈ B) is what? Well, X is just the identity
function, so X ∈ B if and only if x ∈ B. So P (X ∈ B) = P (B), so the
distribution of X is equal to P .

Furthermore, the X1, . . . , Xn are independent, by the previous theorem (be-
cause their distribution is the product distribution of the individual ones).

I should say, that as a remark, this corollary also holds for a countable
collection of random variables. So if you go on and on with these probability
measures, and you have countable number of them, you can find a sequence of
random variables. So, that’s called the Kolmogorov’s Extension Theorem. You
have to work considerably harder to prove it.

Second of all, I should say, so that this construction is done so that it’s trivial
do to it. However, if you fiddle with this construction a little bit, you can make
it so that all your random variables are functions from the unit interval. These
are standard variables. It takes a bit more work (you have to somehow invert
the distribution).

The one thing you should (if you’re dealing with this the first time) think
about: many many different random variables have the same distribution. The
distribution tells you how to compute probabilities, but it does not tell you
everything.

How does all of this reflect to densities? Let’s recall a few facts about
densities.
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1. First, a positive measurable function f ≥ 0 is the density of a random
variable X if P(X ∈ A) =

∫
A f(x) dx, for every Borel set A ⊂ R. Of

course, the density is only defined a. e. If you change the density on a set
of measure zero, then nothing changes.

2. Two, if you have a random variable instead a random vector: the definition
is the same if X is a random vector except that f is define on Rn and A
is a Borel set in n dimensions.

3. Joint density of n random variables X1, . . . , Xn is the density of the ran-
dom vector (X1, . . . , Xn).

Theorem 13.4. Let X1, . . . , Xn be random variables with densities f1, . . . , fn

and joint density f . Then X1, . . . , Xn are independent ⇐⇒ f(x1, . . . , xn) =
f1(x1) · · · · · fn(xn) for almost all (x1, . . . , xn) in Rn.

There are some technical difficulties. In order to get a density from a distri-
bution, we need to differentiate. If you have functions which are not continuous,
then differentiation is kind of a problem. We need the following (not-so-easy-
to-prove) result from measure theory:

Theorem 13.5 (Lebesgue differentiation theorem). Let f : R → R be a
Lebesgue integrable function. Then

1
ε

∫ x+ε

x
f(y) dy

is going to converge (known from calculus) to f(x), for almost all x ∈ R.

This is a one-dimensional version of the Lebesgue differentiation theorem.
You also have the n-dimensional version. So,

Theorem 13.6. Moreover, if f : Rn → R and is Lebesgue integrable, then

1
vol(Q)

∫

Q
(y) dy → f(x)

for almost every x, where Q is a cube containing45 x.

Proof of Theorem 13.4. Without loss of generality, we can assume n = 2. (Make
it an exercise to check this).

X has density f , Y has density g, and (X, Y ) has density ϕ. This means that
P (X ∈ A) =

∫
A f(x) dx, P (Y ∈ B) =

∫
B g(y) dy, and P ((X, Y ) ∈ A × B) =∫

A×B ϕ(x, y) dxdy
So let’s start proving ⇒. Then X and Y are supposed independent. Then∫

A×B ϕ(x, y) dxdy must be equal to, by definition, the product of the individual
probabilities

∫
A f(x) dx×

∫
B g(y) dy. Let A = [x0, x0 + ε] and B = [y0, y0 + ε].

45x can be anywhere in the cube, including the boundary.
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Then A × B is exactly a cube Q which contains (x0, y0). The situation is ripe
for using exactly the theorem.

Send ε → 0, to get: the LHS (by the Theorem) will be φ(x0, y0) and the
RHS is f(x0)g(y0) for almost all (x0, y0). If you want to be a lot more careful,
you can think about sets of measure zero. In particular, you can identify what
your set of measure zero is, and what your final set of measure zero is.

For the direction (⇐=), it’s even easier. (Of course, the other direction was
easy to do by use of a sledgehammer). In this direction, we assume that the
joint density is the product of the two densities for almost all (x, y) ∈ R2. Now,
we use Fubini’s theorem.

P (X ∈ A, Y ∈ B) =
∫

A×B
ϕ(x, y) dxdy

=
∫

A×B
f(x)g(y) dxdy

=
∫

A
f(x) dx

∫

B
g(y) dy, by Fubini

= P (X ∈ A) · P (Y ∈ B).

So, by definition, X and Y are independent.

Let’s look at a few examples. The first example we should look at is the
uniform distribution. Let X and Y be independent random variables, uniformly
distributed on [0, 1]. This is two separate calls to your computer’s uniform
random number generator. So, the density of both X and Y is given by the
density function

f(x) =
{

1, x ∈ [0, 1]
0, otherwise.

So the joint density of X and Y is

ϕ(x, y) =
{

1, if (x, y) ∈ [0, 1]× [0, 1]
0, otherwise.

I should also say (as an unofficial exercise) try to prove that if you have a
random vector uniformly distributed on a set S ⊂ R2, then its coordinates are
independent if and only if S = A×B.

Question: What is our infinitesimal integration?

• Answer: This is our two-dimensional Lebesgue measure. It doesn’t say
anything about the fact that the two dimensional function is corresponding
to a random vector.

You could in principle, talk about densities with respect to other underlying
measures, but we won’t talk about that in this course.

Second example: the Gaussian distribution on Rn. Also called the multi-
variate normal distribution. The density of each coordinate Xk is given by the
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standard one-dimensional Gaussian

f(x) =
1√
2π

e−x2/2, x ∈ R

and the coordinates are independent, so the density of (X1, . . . , Xn) is

ϕ(x1, . . . , xn) =
1

(2π)1/2
e−

1
2 |x|

2
,

where |x| = x2
1 + x2

2 + · · ·+ x2
n. See you on Friday.

NOVEMBER 16, 2007

Today’s the last day. It seems to be working now.

Theorem 13.7.
E(XY ) = EX × EY.

This is not hard to see.

Proof. let PX and PY be the distributions of X and Y . Then these are the
measures on R (because these are random variables). Then

EX =
∫

x dPX

and
EY =

∫
y dPY ,

and on the other hand

E(XY ) =
∫

xy d(PX × PY )

since X and Y are independent. By Fubini, you can write this as an iterated
integral (which falls into a product), which is exactly EX × EY .

But Fubini is not valid without any assumptions whatsoever. In this case,
this is true because you can apply everything to |X| and |Y | instead of X and
Y . (To justify Fubini, do the absolute values first.)

By induction,

Corollary 13.8. If X1, . . . , Xn are independent random variables with finite
expectations, then E(X1X2 · · ·Xn) = EX1 × · · · × EXn.

In general, two random variables X and Y for which E(X · Y ) = EX × EY
are called uncorrelated.

So independent random variables are uncorrelated. It’s not necessarily true
that uncorrelated random variables are independent. For an example, let’s look
at Ω = [−1, 1] with uniform probability. Let’s look at the two random variables
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X(x) = x and Y (x) = 3x2 − 1. Then EX = 0 and E(XY ) = 0. It also happens
to be that EY = 0, but that doesn’t matter. Then X and Y are uncorrelated,
but not independent. How can you see this immediately? Prove by definition,
sure, but how can you see if there is any sense in this notion of independence,
they can be independent. Well, Y is a function of X, that’s why! They are in
functional relation to each other.

These two polynomials are the first two uncorrelated polynomials in this
family called the Legendre polynomials. These come up in many areas of prob-
ability, combinatorics, differential equations, and so on and so forth.

13.1 Sums of independent random variables

Let’s start with an example. If X and Y are random variables with known
distributions, is the distribution of X+Y determined? Certainly the expectation
is determined (by the sum rule). But is the entire distribution determined? It
isn’t. Here is an example: Take any random variable X such that X

d.= −X.
One example is flipping a coin, using heads for 1 and tails for −1. Another is
X(x) = x. Then X + X and X + (−X) are what? All four summands have the
same distribution. The first is equal to 2X and the second is equal to 0.

So, knowing the distribution of the summands is not enough. You actually
need the joint distribution. If X and Y are independent, then we can compute
the distribution of the sum.

So, if X and Y are independent, how can we compute the distribution of
X + Y ? Well, we’ll see this next. So this is our next theorem.

Theorem 13.9. X and Y are independent random variables with distribution
functions G and G, respectively. Then, the distribution function of the sum
X + Y is given by

H(z) =
∫

R
F (z − y) dG(y) =

∫

R
G(z − y) dF (y).

Before we go on to prove this theorem, let’s just try a little bit to understand
what’s going on here.

Corollary 13.10. If X and Y have densities f and g, respectively, then X +Y
has density

h(x) =
∫

R
f(x− y)g(y) dy.

This h = f ) g is known has the convolution of f and g.

Proof of the Corollary. We have this formula here, so if you rite F (z − y), this
is of course ∫ z−y

−∞
f(x) dx,
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which is by change of variables
∫ z

−∞
f(x− y) dx

(just replacing x with x− y). Now, we look at the formula H to get

H(z) =
∫ ∞

−∞

(∫ z

−∞
f(x− y) dx

)
g(y) dy

Now, we reverse the order in our double integral:

H(z) =
∫ z

−∞
dx

∫ ∞

−∞
f(x− y)g(y) dy

Therefore, we take derivative, and h is equal to the convolution.

Proof of Theorem. The joint distribution of X and Y has distribution PXtimesPX ,
since theyr’e independent. Then H(z) = P (X + Y ≤ z) is equal to P((X, Y ) ∈
{(x, y) ∈ R2 : x + y ≤ z}). So this is really saying nothing, but saying what we
want to do a little bit clearer.

When you have a distribution, you can compute that probability by inte-
grating over this set. So, we have

∫

{(x,y)∈R2:x+y≤z}
d(PX × PY )

In the next step, instead of integrating over this set, we integrate over the
entire plane and take the indicator of this set.

∫ ∫

R
1{(x,y)∈R2:x+y≤z}d(PX × PY )

By Fubini, we can rewrite this as an iterated integral

=
∫

R
dPY ·

∫

R
1{(x,y)∈R2:x+y≤z}dPX

=
∫

R
dPY ·

∫

R
1{(x,y)∈R2:x≤z−y}dPX

=
∫

R
dPY ·

∫

R
PX(X ∈ (−∞, z − y])dPX

=
∫

R
F (z − y) dPY (y)

The only thing you need to remember that the integral with respect to a measure
is the same as the Stieltjes integral with respect to a distribution function.

So, this is
∫

R F (z − y)G(y). You just have to see things from earlier in the
class.
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It’s used only when X and Y have densities. The convolution are truly
what’s used the most. It’s also used in the discrete case as well. Then, the
formula is much easier then. You can do it as an exercise to write down the
formulas in the case of discrete random variables:

Example 13.11. Let X and Y be independent uniform random variables on
[0, 1]. Compute the sum of the two calls. What do you get? You get the triangle.

f = density of X = density of Y

So the density of X + Y is

h(x) =
∫

R
1[0,1](x− y)1[0,1](y)

So 0 ≤ y ≤ 1, but also 0 ≤ x− y ≤ 1, so y ≤ x and y ≥ x− 1.
What are the restrictions on x? The sum will have values between 0 and 2.

It’s best to not sort things out from the integral. So x ∈ [0, 2]. If x ∈ [0, 1], then
you will have two different restrictions in y. The only condition you have if
x ∈ [0, 1] is y ≤ x, so you have

∫ x
0 dy = x. If x ∈ [1, 2], then the other condition

is worthless, so you have
∫ 1

x−1 dy = 2 − x. So, indeed, you get the triangle (or
“hat” function) for h.

The final theorem that we’ll prove today is:

Theorem 13.12. If X1, . . . , Xn are independent random variables with finite
variances, then

var(X1 + · · ·+ Xn) = var(X1) + · · ·+ var(Xn).

This is very very important. This is because the expectation and the variance
increase at the same rate. So, the deviation from the expectation increases at a
slower rate.

Proof. Recall the formula for variance. The one that’s most useful here is

var(X) = E((X − EX)2).

So,

var(X1 + · · ·+ Xn) = E((
∑

k

Xk − EXk))2)

= E(
n∑

k,&=1

(Xk − EXk)(X& − EX&))

=
n∑

k,&=1

E((Xk − EXk)(X& − EX&))

=
n∑

k=1

E((Xk − EXk)2).
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Okay, that’s it for me. Good luck.

NOVEMBER 19, 2007

I’ll put up the next homework today, so that you’ll have more than a week
to do it. So Janko Gravner talked on variance, independence, density of a sum
of independent random variables.

There are two classical parameters associated to random variables: the mean
and variance. I will show you more ways to control a random variable (i.e. decay
at infinity). These decays (read, parameters) are best studied through moments:

14 Moments, Lp spaces, Inequalities

Let X be a random variable. We call EXp the pth moment of X. In almost all
cases, we can safely assume that p > 0 and p ≥ 1.

Often, X ≥ 0 is the set up in which we consider these random variables and
moments. Often, it is convenient to consider the pth absolute moment E|X|p.
If p = 1, we are talking about the expectation of X. If the expectation of X
is zero, then the second moment will be the variance. The third moment will
measure even more how X is spread on R. So the mean shows the location of
X. The variance shows how it’s spread. The third moment shows even more
how it’s spread.

The most convenient way to do this is to map it into the theory of Lp spaces
in analysis.

14.1 Lp Spaces

Let f : Ω → R be a measurable function (on a probability space). If we have
functions that are equal almost everywhere, we will identify them.

Instead of working with individual functions f , we will work with the whole
“class of equivalence” of the functions

{g : g = f almost everywhere}.

We will work with the classes of equivalence, but we’ll just verbally say that we
work with functions. We do not want to distinguish a class from its representa-
tive.

The set of all functions (classes) for which the integral

|f |p dµ < ∞

is called Lp = Lp(Ω) = Lp(Ω, µ) = Lp(µ), the Lp space.
Being in an Lp space is a question about the growth of a function. We

measure the “size” of these functions with the Lp norm

‖f‖p =
(∫

|f |p dµ

)1/p

. (p ≥ 1).
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Even if p = ∞, this makes sense (because we can think of the limit as p goes to
∞). Then (in analysis), this converges to the sup:

‖f‖∞ = sup
ω∈Ω

|f(ω)|. (p = ∞)

14.2 Inequalities

What’s remarkable here is that there are a whole bunch of inequalities that
govern these Lp spaces. One of these is the Minkowski inequalitiy.

Proposition 14.1 (Minkowski’s Inequality).

‖f + g‖p ≤ ‖f‖p + ‖g‖p (1 ≤ p ≤ ∞)

This is clear for ∞ and also clear for 1.
The following is easy intuitively, but it takes some time to prove it.

Proposition 14.2 (Jensen’s Inequality). Consider any convex46 function ϕ.
Then

ϕ

(∫
f dµ

)
≤

∫
ϕ(f) dµ.

How should you think about this? The convexity of a function is a two-
point condition. The function applied to the average is smaller than the average
applied to the function. The proof of this reflects that.

If you take ϕ(x) to be the absolute value, one gets

Corollary 14.3. |
∫

f dµ| ≤
∫
|f | dµ.

Proof. Take ϕ(x) = |x|.

If you take ϕ(x) = |x|p, then you get

Corollary 14.4. |
∫

f dµ|p ≤
∫
|f |p dµ for 1 ≤ p ≤ ∞.

Proof. Take ϕ(x) = |x|p. For p > 1, ϕ is convex.

In particular, if we take the pth root of both sides, we can get that

‖f‖1 ≤ ‖f‖p for p ≥ 1.

So this immediately gets you an inequality about the norms. More generally,
the proposition we have is that the norms are “well-ordered”:

Proposition 14.5. ‖f‖p ≤ ‖f‖q if 0 ≤ p ≤ q ≤ ∞.

There, there is a whole range of norms. It’s harder to control the ∞-norm
than any other norm. This inequality contains much information: the average
is smaller than the infinity [norm], etc.

Finally, there’s
46µ is convex if ϕ(λx + µy) ≤ λϕ(x) + µϕ(y) if λ + µ = 1 and λ, µ ≥ 0.
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Proposition 14.6 (Hölder’s Inequality).
∫
|fg| dµ ≤ (

∫
|f |p dµ)1/p(

∫
|g|q dµ)1/q

for 1
p + 1

q = 1 connected by this conjugacy.

In other words, ‖fg‖1 ≤ ‖f‖p‖g‖q. Why is this useful? You’ve seen some-
times when you can integrate one factor of a product, but you don’t know how
to integrate the product (and integration by parts fails). Then you can use
this to estimate the integral of the product. One partial case of this is where
p = q = 1

2 where you get the Cauchy-Schwarz inequality.

Corollary 14.7 (Cauchy-Schwarz inequality). ‖fg‖1 ≤ ‖f‖2‖g‖2.

Question: Is there any problem with the inequalities that you have here?
It seems that if p = 1, then the triangle inequality doesn’t hold. It seems that
we require ϕ to be convex.

• Answer: Suppose that we know the corollary for p. It’s actualy a good
exercise to go from ‖f‖1 ≤ ‖f‖p to the proposition ‖f‖q ≤ ‖f‖q. You can
do this by a preprocessing. So it’s true.

Question: How does this proof work?

• Answer: Apply the formula not to f , but to |f |.

We will not use all of these inequalities at once. I just wanted to collect them
all at once so that you could see them. There are many consequences (I should
say interpretations) of these inequalities in probability theory. For example

(E|X|p)1/p ≤ (E|X|q)1/q if 0 < p ≤ q ≤ ∞

So, if you bound (E|X|q)1/q, then you know all moments below it.
And so on. So, for every inequality above, we get an inequality about mo-

ments. So this was a break into analysis.

15 Limit Theorems

We will now go to probability theory. In fact, the first main result of probability
theory: the limit theorems. The first is the Law of Large Numbers.

15.1 The Weak Law of Large Numbers

Laws of large numbers tell us: The frequency of successes in large trials. I expect
that 50% I’ll be hitting heads and 50% tails. The Law of Large Numbers will
tell us the probability. In words, the theorem tells us with probability going to
one, we have half heads and half tails. The question is what is the probability
of this?

It will tell us that some frequencies will converge to 1
2 . We need some notion

(modes) of convergence. There are many modes of convergence, and one of them
is the convergence in probability.
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Definition 15.1 (Convergence in probability). A sequence of random variables
X1, X2, . . . converges in probability to a random variable X if

∀ε > 0 P(|Xn −X| > c) → 0 as n →∞.

Then we write Xn
p→ X.

It’s a very natural mode of convergence. We say that whatever tolerance we
choose, we say that Xn will not deviate by much.

There is a stronger convergence: the convergence in Lp (p > 0).

Definition 15.2. A sequence of random variables X1, X2, . . . converges in Lp

to a random variable X if

‖Xn −X‖p → 0 as n →∞.

In other words,
E|Xn −X|p → 0 as n →∞.

Why is this stronger?

Proposition 15.3. Xn
Lp

→ X implies Xn
p→ X.

Proof. We know some information about the expectation. The expectation of
the difference is small. We need that the probability (or the tail of the difference)
is small. If you know the expectation, we need to say something about the tail.
What is that? Chebychev’s Inequality47. We apply Chebychev’s Inequality.

P(|Xn −X| > ε) ≤ P(|Xn −X|p ≥ εp) ≤ E|Xn −X|p

εp
→ 0.

Theorem 15.4 (Weak Law of Large Numbers). Let X1, X2, . . . be independent
random variables with EXk = µ for all k, and var(Xk) ≤ c < ∞, by some
common48 constant c. Consider Sn = X1 + X2 + · · ·+ Xn.

Then
Sn

n
→ µ

in probability (as n →∞).

So the average of n independent random variables converges to the common
mean. Given all of this theory, the proof is simple.

47There’s a confusion in the literature. Markov was a student of Chebychev.
48Don’t be too concerned about the variance. The most important thing is their common

mean.
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Proof. Given the proposition, we will prove that Sn
n

L2

→ µ, and that will be
enough. So, is

E
∣∣∣∣
Sn

n
− µ

∣∣∣∣
2

→ 0? (22)

What is µ? Note that the mean of Sn
n is µ (by the linearity of expectation). So

E(Sn
n ) = µ.
Then (22) = var(Sn

n ) = 1
n2 var(Sn) = 1

n2 (var(X1) + · · · + var(Xn)) ≤ cn
n2 =

c
n → 0.

We actually even know the rate ( 1
n ) of convergence.

NOVEMBER 21, 2007

I have graded your “midterm.” It’s good over all, but I need it back. Typ-
ically, the bargaining case for the final grade is based on overall performance.
You can look at your grade on SisWEB. You are welcome to look at it for an
hour or so.

We were studying the first major theorem of probability theory, which is the
Weak Law of Large Numbers. See Theorem 15.4. This is a very simple theorem
to prove, and it’s very flexible.

Remark 15.5. 1. The convergence holds in L2, rather than simply in prob-
ability (which is the expectation of X1 + X2 + · · ·+ Xn squared, which is
just the variance of the variable Sn

n .

2. The theorem holds for uncorrelated49 Xk. The only place where we needed
the uncorrelated was where the sums of the variances were the variance of
the sum.

It has an interpretation in statistics (in statistical learning theory) as follows:
So suppose X is a random variable with unknown mean (it maybe an outcome
of the experiment); We want to estimate/compute the mean µ = EX. What
access do we have to this random variable? We can make a finite number of
experiments. We can make n experiments. Take n independent observations
of X. These are independent random variables X1, . . . , Xn with the same dis-
tribution as X. They are called “independent copies of X.” We do not know
the random variable X, because we do not know the probability space. So we
take these many samples. The Weak Law of Large Numbers guarantees that
the unknown mean µ of X can be well-approximated by X1+···+Xn

n , the known
arithmetic mean of the sample. With any fixed tolerance ε, we can “observe”
the mean. That’s the power of the Weak Law of Large Numbers. For example,
you are tossing a coin and you don’t know if it’s fair. You make an experiment
a million times. If you see heads more than one-half, then you don’t have a fair
coin.

49rather than independent
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One particular case for this was the very old Bernoulli Law of Large Numbers
(1713). Bernoulli proved the statement for Bernoulli random variables:

Theorem 15.6 (Bernoulli Law of Large Numbers). Let Sn be a binomial ran-
dom variable with parameters (n, p). Sn is the number of successes in n inde-
pendent trials, where the probability of success in each trial is p.

Then Sn is a sum of independent random variables, where Xk are each
Bernoulli random variables with parameter p. Then this Law of Large Num-
bers applies, so

Sn

n
→ p

in probability, as n →∞.

This ratio Sn
n is the fraction of successes.

Bernoulli was one of the most well-known mathematical clan. They had
around 12 Bernoulli spread around 200 years. It’s hard to know now who did
what. There were multiple Jacob’s. As they moved around, they even changed
names.

Example 15.7. Suppose you want to know how many women and how many
men are in a given population. Take a random sample of people from a given
population. Then, with high probability, the sample proportion of women is very
close to the true proportion in the population.

Example 15.8. Tossing a fair coin n times: We’re looking at the number of
heads. Then

P(0.49n ≤ number of heads ≤ 0.51n) → 1 as n →∞.

Question: How large do sample sizes need to be?

• Answer: This is the beginning of the statistical learning theory. It’s a big
question to ask and answer how big the sample needs to be. To make a
long story short, the next big theorem in probability is the Central Limit
Theorem. This says that we can treat a random variable like a Gaussian.
So, it will become eventually that you can’t beat the variance, for one.
For coins, we the variance can not be beat by

√
n.

P(n− t
√

n ≤ number of heads ≤ n + t
√

n) → 1 as n ≥ 1− e−t2/2.

We have a parameter t.

Now we will try to improve on the Weak Law of Large Numbers, because of
its importance. We will try to get rid of the finite variance condition (because
it’s actually not needed). But then, we will throw into the conditions that
the Xk are indentically distributed. In the exercise, you will get rid of this
requirement. You need some way to control what happens at tails. Another
way is something like E|Xk| = µ. Any kind of condition you put on the uniform
control, you’ll get a Law of Large Numbers. Everything can be weakened. So
we’ll try to get rid of the most crucial restriction, which is the variance.
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Remark 15.9. There exist random variables with finite mean and infinite vari-
ance. That was one of the exam problems (EX < ∞, EX2 = ∞).

If there is no finite variance, the only good thing that you probably have
going for you is truncation. So, this is a method that goes back to Markov.

Theorem 15.10 (Markov’s Truncation Method). Take X any random variable,
with finite mean. Let M > 1 be a level (of truncation). A method for truncation:
take

X(M) =
{

X, if |X| ≤ M
0, if |X| > M

}
= X · 1{|X|≤M}.

Then X(M) → X pointwise as M → ∞, and |X(M)| ≤ M pointwise, and
|X(M)| ≤ |X|. In particular, you have not only the variance, but all moments.
These two imply, by Dominated Convergence Theorem, that EX(M) → EX as
M →∞. Moreover,

E|X(M) −X| → 0 as M →∞. (23)

An exercise is to prove this last line!
What’s the difference in (23)? In X −X(M), we have just the part that has

been truncated, so
X −X(M) = X · 1{|X|>M}.

So we just proved the corollary (which has nothing to do with truncation) that

Corollary 15.11. For a random variable X with finite mean,

E|X| · 1{|X|>M} → 0 as M →∞.

X is finite mean, that ensures that there are “few” “big” values (but they
are still big).

So, now we’ll prove the theorem for independent identically distributed vari-
ables without the finite variance condition.

Proof of Theorem. Truncation. Let M > 1, consider

X(M)
k := Xk · 1{|Xk|≤M}, S(M)

n = X(M)
1 + · · ·+ X(M)

n .

Then
var(X(M)

k ) = E((X(M)
k )2 − (EX(M)

k )2 ≤ M2.

Then, we can apply the old version of the Law of Large Numbers with finite
variance:

S(M)
n

n
→ EX(M)

1

in L2 as n →∞. If L2 norm goes to zero, then L1 norm goes to zero. Thus, this
convergence is also in L1, therefore also in probability. What does this mean?
It says

E
∣∣∣∣∣
S(M)

n

n
− EX(M)

1

∣∣∣∣∣ → 0 as n →∞.
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We haven’t done anything yet. This is just old stuff. Nothing happened so
far. Something will happen now. What will we need? We’ll need to know this
without the truncation? The truncated random variable is close to the non-
truncated one. Perhaps same for the other term. Perhaps the integration will
take care of the small difference.

Now we approximate S(M)
n by Sn and X(M)

1 by X1. By the triangle inequal-
ity,

E
∣∣∣∣
Sn

n
− EX1

∣∣∣∣ ≤ E
∣∣∣∣∣
S(M)

n

n
− EX(M)

1

∣∣∣∣∣ + E
∣∣∣∣∣
Sn − S(M)

n

n

∣∣∣∣∣ + E|X1 −X(M)
1 |.

Now, we estimate the first term:

E
∣∣∣∣∣
Sn − S(M)

n

n

∣∣∣∣∣ ≤
1
n

n∑

k=1

E|Xk −X(n)
k | = E|X1 −X(M)

1 |.

Thus

E
∣∣∣∣
Sn

n
− |EX1

∣∣∣∣ ≤ 2E|X1 −X(M)
1 |+ E

∣∣∣∣∣
S(M)

n

n
− EX(M)

1

∣∣∣∣∣

Now we let n →∞. Then

lim sup E
∣∣∣∣
Sn

n
− EX1

∣∣∣∣ ≤ 2E|X1 −X(M)
1 |.

Let M →∞. Then E|X1 −X(M)
1 | → 0.

What if you know the variance is finite, but not uniformly bounded? What
advantage can you get if you don’t know that it’s uniformly bounded? It’s a
quantatative statement.

NOVEMBER 26, 2007

15.2 Applications of the Weak Law of Large Numbers

We’ll look at two elegant applications of the weak law of large numbers. The
first application is called Monte-Calro integration. This is an application in
basic scientific computing.

Maybe I’ll just remind you what is the Weak Law of Large Numbers (WLLN).

Theorem 15.12. If X1, . . . , Xn are independent identically distributed random
variables with the common mean µ < ∞. Consider their sum Sn = X1+· · ·+Xn.
Then Sn

n → µ in probability.

Recall that convergence in probability here means that

P(|Sn

n
− µ| > ε) → 0 as n →∞

for every ε > 0.
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15.2.1 Monte-Carlo Integration

So here’s a problem that has no apparent connection to probability. Consider
an integrable function

f : [0, 1] → R.

As you know, there are many functions that are not analytically integrable (no
closed form formula for the integral). So the problem is numerically integratie
f . That is, compute

∫ 1
0 f(x) dx. The use of [0, 1] here is just arbitrary.

The first thing you might do is to approximate this by Riemann sums. We
can take an equidistributed list of x-value points. The first näıve approach is
to take equidistant points x1, . . . , xn. At xk, evaluate the function. Then hope
that the integral can be well-approximated by the expected mean:

∫ 1

0
f(x) dx ≈ 1

n

n∑

k=1

f(xk).

This is a Riemann integral, because the mesh 1
n goes to zero. In very simple

situations it works. But it almost always fails in the hard problems of scientific
computing. Why is that? There is one problem with this approach.

1. We do not know anything about this function except that it is integrable.
In particular, if f has a lot of structure, we may just pick the wrong points
every time. Our function might just vanish at the points that we pick.
We want a result that has “zero prior knowledge.” The structure of f
may lead to wrong information about the integral from the points f(xk).
There are many such “oscillatory” functions (of sines and cosines).

The result we are going to prove allows you to integrate arbitrary functions
f without prior knowledge. We will not take equ-distributed points. Why?
Because the structure of the points might align with the structure of the function
f . Instead, we use random points. Randomness goes against structure.

So, the solution to this problem is: instead of equidistributed points xk, take
random points. So let’s do that.

We consider random variables x1, . . . , xn independent and uniformly dis-
tributed on [0, 1]. (When you see this for the first time, you look at this with a
negative approach, because you worry about gaps. The gaps will be small, if n
increases. The average gap will still be 1

n .)
Then we hope that the arithmetic mean

In =
1
n

n∑

k=1

f(xk)

is a good approximation to the true mean
∫ 1
0 f(x) dx.

Well, this is just a reformulation of the Weak Law of Large Numbers. In
words, each xk is a uniform independent random variable.

Theorem 15.13 (Monte-Carlo Integration). In →
∫ 1
0 f(x) dx in probability.
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Monte-Carlo Integration is a random method. It is a randomized algorithm.
So, in probability, we concern the In’s. This is the theorem, and the proof is
just a reinterpretation of the WLLN in this context.

Proof. We view f as a random variable50 on the probability space Ω = [0, 1]
with Borel σ-algebra and the uniform probability measure.

Then f
d.= f(xk) for all k. (Why is the distribution the same? It says that the

measure of {x : f(x) < a} has to be the same as the probability P(f(xk) < a},
but these are both uniform measures.)

Once we see this is true, then Ef =
∫ 1
0 f(x) dx. Then, the WLLN applied

to the random variables f(x1), . . . , f(xn) completes the proof.

This is one of the first randomized algorithms in scientific computation. The
main strength of the method is that it does not require any knowledge about f .
There may be no structure. It’s just that f is integrable.

15.2.2 Weierstrass Approximation Theorem

Another application of the Weak Law of Large Numbers will be the classical
analysis. This is one of the major results in analysis that says an arbitrary
function can be well-approximated. We will prove this with probability theory.

The result is “Every continuous function f on [0, 1] can be well approximated
by a polynomial fn in the sup-norm.” Namely, point-wise, fn will be close to
f , but also over the whole interval, this will be true as well.

Theorem 15.14 (Weierstrass Approximation Theorem). Let f be a continuous
function on [0, 1]. Then there exist polynomials fn such that

‖f − fn‖∞ = sup
x
|f(x)− fn(x)| → 0 as n →∞.

This is a very useful theorem because it tells you that independent of the
“wildness of the functions,” we can think of arbitrary continuous functions as
polynomials (if we can accept a little bit of error). There are many proofs,
constructive and non-constructive:

One proof is due to Bernstein (1913) who gave an explicit formula for fn.
We will use probability theory to construct these Berstein polynomials fn.

The first näıve approach is to interpolate f between equidistributed nodes
xk and compute the values f(xk) of f at these nodes. This is a classical inter-
polation method. There are two problems to the approach of interpolation:

1. The structure problem will still be there.

2. The second problem is that if you do this, the polynomials will be okay
in the middle and then they will start to oscillate near the endpoints.
There will be very huge oscillations of fn near the edges. This is called
Runge’s phenomenon. While we can control the function at the nodes,

50after all, we view random variables as measureable functions, and f is a function!
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we can no longer control the function between the nodes (because it is a
polynomial). There is a way to break down this oscillation problem using
random points.

3. But even then, there is a problem for an explicit formula for fn. You
will need to solve a system of linear equations given by the [unstable]
Vandermonde matrix.

This is one of the very elegant proofs in analysis.

Proof of Weierstrass Approximation Theorem after Berstein. Think of this prob-
lem for a fixed x. Fix x ∈ [0, 1]. We want to find a polynomial fn such that for
this particular x,

fn(x) ≈ f(x).

Where to look for such a polynomial? So this is the brilliant idea of Bern-
stein. We give up thinking of x as a fixed point, but we make a random variable
that is tightly distributed around x. We will replace x by a cloud around x, the
cloud being the values of the random variable around x. So, we will replace x
by a random variable that’s concentrated about x, and then compute its mean.
So, how do we do that?

What’s the simplest thing we can do? Take a binomial random variable.
Consider Sn, the Binomial random variable with parameters n and x. Recall
that the Binomial random variable is the sum of 0s or 1s, each taken with
probability x. So, what is ESn? It is nx. So Sn

n → x in probability by the Weak
Law of Large Numbers.

So, we’ll replace x by this random variable. And then we’ll see what happens.
We compute Ef(Sn

n ). This is a discrete random variable, so

Ef

(
Sn

n

)
=

n∑

k=0

f

(
k

n

)
P(Sn = k)

=
n∑

k=0

f

(
k

n

)
·
(

n

k

)
(1− x)n−kxk.

What is this? This is a polynomial. Call this Bernstein’s polynomial fn(x).
We have not proved the theorem yet. It is now highly plausible that fn ≈ f .

Why? This Sn
n is close to x. So is f of one is near f of the other? That’s the

heuristic reason for this to hold. The arguments are close to each other, but we
do not know what happens once we apply the function?

We claim that fn → f in the sup-norm. Fix ε > 0. We want to show that

∃ n0 ∀ n > n0 :
∣∣∣∣Ef

(
Sn

n

)
− f(x)

∣∣∣∣ < ε for every x ∈ [0, 1]. (24)

By WLLN, we know that Sn
n ≈ x.

We use the (uniform) continuity of f , thus

∃δ > 0 such that |x− y| < δ ⇒ |f(x)− f(y)| < ε.
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We need to formulate the WLLN here a little bit. We consider the “good
event”

An =
{∣∣∣∣

Sn

n
− x

∣∣∣∣ < δ

}
.

By WLLN, P(An) → 1 as n →∞.
We don’t have f convex, so we split into two parts (the good part and the

bad part):

E
∣∣∣∣f

(
Sn

n

)
− f(x)

∣∣∣∣ ≤ E
∣∣∣∣f

(
Sn

n

)
− f(x)

∣∣∣∣1An +
∣∣∣∣Ef

(
Sn

n

)
− f(x)

∣∣∣∣1Ac
n

= Good + Bad.

On An,
∣∣Sn

n − x
∣∣ < δ. By continutity,

∣∣f
(

Sn
n

)
− f(x)

∣∣ < ε. So “Good” ≤ ε.
On [0, 1], |f(x) ≤ M (since f is bounded). Then,

∣∣f
(

Sn
n

)
− f(x)

∣∣ ≤ 2M . So
“Bad” ≤ 2M · P(AC

n ) → 0 as n →∞. So “Bad” ≤ ε for all large n.
Thus Good + Bad ≤ 2ε. This is not quite right. We indeed proved (24) for

an individual x.

NOVEMBER 28, 2007

You can use anything, but in the end, your final submission should only use
results from class and the exercises. Also, I will be away next week, so no office
hours, though the TA will have office hours.

We’ll try to do more work on Kolmogorov’s 0/1 Law. The “bad thing” is
that we don’t know if the probability is 0 or 1.

16 Borel-Cantelli Lemmas

This corresponds to Chapter 2 section 18 in the text. The Kolmogorov 0-1
Law implies that: if A1, A2, . . . are independent, then all the tail events have
probability either 0 or 1. Recall, a tail event is independent of any first k (k
finite) events Ai. One such is An occurs i.o. (infinitely often). So,

P(An i.o.) = 0 or 1.

The Borel-Cantelli Lemmas allow us to decide which one we have, and the
conditions are very simple.

Theorem 16.1 (Borel-Cantelli Lemmas). Let A1, A2, . . . be events.

1. If
∑

k P(Ak) < ∞ then P(An i.o.) = 0.

2. Suppose A1, A2, . . . are independent. If
∑

n P(An) = ∞ then P(Ani.o.) =
1.

Remark 16.2. In the second part, independence is needed. Just take one event
A and let An = A for all n.
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Corollary 16.3 (0-1 Law). Let A1, A2, . . . be independent events. Then

P(An i.o.) =
{

0 if
∑

n P(An) < ∞
1 if

∑
n P(An) = ∞.

Of course, the Kolmogorov Law told you about more than this specific tail
event, but here’s a computation for this specific tail event. Now, the proof of
the lemmas in Theorem 16.1:

Proof. 1. We can write the probability than any An occurs as an expectation:

P(An) = E1An .

Then ∑

n

P(An) = E
∑

n

1An .

We should justify this step above with some limit theorem. We know that
the LHS is

∑
n E1An and we can pull the expectation in front of the sum

by Monotone Convergence Theorem. Notice that
∑

n

1An

is the number of events An that occur. Let’s denote it by N . N is a
random variable. This is close to what we actually need, because the
conclusion of the lemma is about how many events occur. From the above
argument, we know that N has finite mean:

EN < ∞.

Therefore,
P(N < ∞) = 1.

In other words, N is finite a.s. This is exactly the conclusion of part 1 of
the lemma51. To restate and make our statement closer to the statement
of the theorem, P(N = ∞) = 0.

2. We need to use independence. What is the event that {An i.o.}? This is

{An texti.o.} = lim supAn =
∞⋂

n=1

⋃

k≥n

An.

For every event n, there is a further event that occurs. That causes the
“infinitely often” to be satisfied. Since the sequence is decreasing, we can
also write that this is

lim
n

⋃

k≥n

An.

51We go to random variables, introducing N , even though the original statement doesn’t
speak of random variables. N “counts” the number of events that occur.
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We want to compute the probability. To show the probability of {An i.o.}
is 1, it is necessary and sufficient to show that

P




⋃

k≥n

Ak



 → 1 as n →∞.

We will actually show that it is 1. We don’t know about unions of indep-
nedent events, so we use De Morgan’s law to make it an intersection:

P




⋃

k≥n

Ak



 = 1− P




⋂

k≥n

Ac
k





= 1−
∏

k≥n

P(Ac
k) by independence and continuity

= 1−
∏

k≥n

(1− P(Ak))

= 1,

because
∑

k≥n P(Ak) diverges. Here, we used a fact from analysis:
∑

k

ak = ∞ =⇒
∏

k

(1− ak) = 0.

This is an exercise for which you need to take logarithms.

16.1 Head runs

There are lots of applications of Borel-Cantelli Lemmas. One application that
we will do in detail will be for Head runs.

Toss a coin infinitely many times. You seed heads or tails come up. Sooner
or later, you will see HH in a row. Or 20 heads in a row. If you have a lot of
patience, you will see 100 heads come up in a row. The question is how long
is it going to take for you to see this 1000000 heads in a row? How often do
the patterns appear in random structures? The Borel-Cantelli Lemmas are the
right tool to study these questions.

We toss a fair coin. We want to observe “HHH· · ·H”, and we want to study
their lengths. Let +(n) = the number of consecutive Hs starting from nth toss.
(So +(n) = 0 if T in nth toss.)

An exercise is to show that

P(+(n) ≥ 100 i.o.) = 1.

This you can do with a little analysis. The very interesting question is can you
increase this to an arbitrary constant? How fast will this sequence of heads
grow as you toss the coin. It will grow like log n.
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Theorem 16.4. 1. For every ε > 0, P(+(n) ≥ (1 + ε) log2 n i.o.) = 0.

2. P(+(n) ≥ log2 n i.o.) = 1.

Proof. 1. P(+(n) ≥ r) = 1
2r . Now we do this probability by Borel-Cantelli.

Let’s just substitute (1 + ε) log2 n.

P(+(n) ≥ (1 + ε) log2 n) =
1

n1+ε
.

This series converges, and by part one of Theorem 16.1, the proof is com-
plete.

2. The second part is more interesting. It gives you a common technique in
probability theory. Why is the second part hard? The problem is that
the events {+(n) ≥ log2 n} are not independent, so we can’t just apply the
Borel-Cantelli lemma right away.
We can “prune” these events so that we’re only talking about non-overlapping
events. Let’s denote r(n) := log2 n.
We look at n1 = 1. Then we look at the next n “after” log n1, so n2 =
n1 + r(1). In general,

n1 = 1
nk+1 = nk + r(nk).

Then, the events Ak = {+(nk) ≥ r(nk)} are independent. We should
somehow “fix” this so that the recurrence starts > 1, simply because
log 1 = 0. Back to the lemma:
These events are independent because Ac

k involve non-overlapping indices.
We just wanted to “separate” events somehow. So we have

P(Ak) =
1

2r(nk)
.

Now, we just want to see that the sum of this series diverges. We’ll do it
in a second, but now there’s no probability left. This is calculus now. So,
we need that

∞∑

k=1

1
2r(nk)

is defined iteratively. So, we fill the gaps in the sum by doing this:
∞∑

k=1

1
2r(nk)

=
∞∑

k=1

1
2r(nk)

· nk+1 − nk

r(nk)
.

Now, we can interpret this jump nk+1 − nk as a sum of 1s:

=
∞∑

k=1

∑

nk≤n<nk+1

1
2r(nk)r(nk)

,
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which is nice because it runs over all indices. This is greater than or equal
to

∞∑

n=1

1
2r(n)r(n)

because r(nk) ≤ r(n), so this is equal to

∞∑

n=1

1
n log2 n

,

which diverges.
Look at how sharp this argument is.

16.2 Monkey and the Typewriter

You can do this for a much bigger set of events. Instead of just H and T, you
can consider the English alphabet (say 40 letters, to deal with punctuation as
well). You have the same thing, just with log40.

Then, with enough time, the Monkey will produce War and Peace, and all
versions of it. How much time will you need to spend? Exponential time.

A reflection of this in the literature: “Library of Babel” by J. L. Borges. I’ll
not include it in the final, but it’s an interesting library that has all possible
books.

NOVEMBER 30, 2007

So a couple of announcements: The final exam is posted, as I promised.
Well, I promised to post in on Thursday, but I posted it Friday. You have
two weeks to complete it. The midterm solutions are posted: some selected
problems where you had difficulties, I guess. In particular the bonus problem,
which was quite interesting. In the final: In problem 3, Xn should be Xk.

So the next week is the last week of classes, as you know. I’ll be away. So
Monday and Wednesday, there will be class. Another faculty will cover for me.
But Friday we’ll cancel class. So the last day of classes for you will be next
Wednesday. There will be no office hours during the week I’m away, except for
the TA. There are OHs today and the week after I’m away on Monday. I can
not give you any help on the final. I can only clarify the concepts or definitions
or the problems themselves. I will not give any hint, so individual work. So
think of it as an in-class exam.

Today’s topic is “Convergence almost surely”, or almost sure convergence.

17 Almost Sure Convergence

One unfortunate fact of probability theory is that we don’t have a unique concept
of convergence, unlike in real analysis where we have one definition of a sequence
of numbers to converge. If you go far enough, in infinite-dimensional spaces,
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you’ll have different notions of convergence. In operators, there are three notions
of convergence.

Similarly in probability theory, there are different notions of convergence.
One of which is convergence in probability. So a sequence of random variables
Xn → X in probability if

∀ε > 0, P(|Xn −X| > ε) → 0 as n →∞.

So for every accuracy ε, if you’re willing to sacrifice this, Xn is close to X
(arbirtrarily). So, there are two inaccuracies (there is your tolerance ε and then
there is this exceptional probability, the piece of probability that you can not
control). The problem with this definition is that you do not know anything
about the part itself. It may wiggle around. It (the area out of tolerance) can
be different for different n.

So, the stronger notion of convergence is the convergence almost surely.

Definition 17.1. Xn → X almost surely if P(Xn → X) = 1.52 This is abbre-
viated Xn → X a.s.

So, for almost all points in the probability space, the sequence converges to
X. It’s not immediately clear why this notion is stronger. We’ll prove that.

A natural way to work with almost sure convergence is to say what it means
that Xn does NOT converge almost surely. Recall that a sequence of real
numbers xn /→ x iff ∃ε > 0 : |xn − x| > ε infinitely often (for infinite sequence
of n’s). So there is a subsequence which is “far” from x. Keeping this in mind,
we can write the following:

Proposition 17.2. Xn → X a.s. iff53 ∀ε > 0, P(|Xn −X| > ε i.o.) = 0.

So the fact that Xn is far from X infinitely often means that Xn does not
converge to X. Of course we wrote it this way because we know about infinitely
often, and Borel-Cantelli, etc.

The theorem that compares our notions of convergence:

Theorem 17.3 (Convergence a.s. and in probability). Let Xn and X be random
variables.

1. Xn → X a.s. implies Xn → X in probability.

2. If Xn → X in probability, then there is a subsequence Xnk → X almost
surely.

Let’s first see, before proving this theorem, we will see why the convergence
in probability (in an example) does not imply convergence almost surely:

Example 17.4. You need to control almost every value of this random variable.
For almost all ω ∈ Ω fixed, you need convergence. Convergence is probability

52P(ω : Xn(ω) → X(ω).
53the condition above does not happen
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means you have a small exceptional set. We’ll make the exceptional set “move”,
and so there will be a “swipe”, a “blip” that “slides acrosss” that we’ll notice.

Let Xn = 1An for some events An. What do we require of the sets? The
probabilities of the An’s must converge to zero. If P(An) → 0, then Xn → 0
in probability. Indeed, the difference between Xn and zero is only on the events
An. So we will require P(An) → 0.

We want to construct an example that does not converge almost surely to
zero. What is the requirement for the sets to not converge almost surely to
zero. Let’s look at the reforumlation. The indicator must be different from zero
infinitely often. This is iff a point is in the set i.o. So, if P(An i. o.) > 0, then
Xn /→ 0 a.s.

For the indicator functions, convergence in probability means the P(An) → 0.
Are there sets for which this is true? Let me give you a hint: Think of

independent events. Then we have a criterion for P(Ani.o.) > 0. Then we have
a criterion for this: Borel-Cantelli. You can take adjacent decreasing intervals,
and have it “rotate back around.” That will work.

For independent sets, P(Ani.o.) is zero if the sum of the probabilities con-
verge, and 1 if the sum of probabilities diverge, by Borel-Cantelli54. So, we
should pick events An such that P(An) → 0 but

∑
n P(An) = ∞. Think har-

monic series.

So here’s the proof of the theorem:

Proof. 1. Assume Xn → X a.s. Let ε > 0. Then 0 = P(|Xn −X| > ε i.o.) =
P(lim sup{|Xn −X| > ε}). We basically finish by the continuity theorem,
which allows us to pull the lim sup in front by only decreasing the value.
Thus, P(lim sup{|Xn−X| > ε}) ≥ lim sup P(|Xn−X| > ε). So, we proved
that P(|Xn −X| > ε) → 0. Hence Xn → X in probability.

2. Assume Xn → X in probability. We want to find a subsequence on which
it converges almost surely. Now we have to somehow think of why our
previous example is no longer a counter example to our statement. If you
take a subsequence, then you have the probabilities of the events converge
to zero. You can take a sequence that decreases fast enough. So, we can
find a subseries that converges. Maybe this is a way to prove this. So we
pick a subsequence.
Fix εk → 0. We can choose a subsequence (nk) such that55

P(|Xn −X| > εk) < 2−k for k = 1, 2, . . .

Since
∑

k 2−k converges, Borel-Cantelli Lemma says

P(|Xnk −X| > εk i.o.) = 0.

Hence, Xnk → X almost surely.

54Actually, the corollary to Borel-Cantelli.
55we can use below comparison to the terms of any convergent series

89



It may be a little abstract in the first sight to see this theorem. Think about
the example of indicator functions.

Question: Is this like in analysis, when we can come up with a series that
converges?

• Answer: Well, sort of. These are different notions of convergence.

So the way I understand this theorem best is by characteristic functions. The
more general version is the following corollary, which unifies the parts of the
theorem:

Corollary 17.5. Xn → X in probability iff every subsequence of Xn contains
a further subsequence that converges a.s.

Proof. • (⇒). The subsequence converges, and by the theorem, it contains
a subsequence that converges a.s.

• (⇐). Assume, on the contrary, that Xn /→ X in probability. Then, ∃ε > 0
and a subsequence (nk) such that56 P(|Xnk−X| > ε) > ε. Formally, there
should be a δ at the end, but you can just take the minimum of them.
If this is true, then no subsequence of Xnk converges in probability. There-
fore, not almost surely (by part 1 of the theorem), a contradiction.

This may seem too abstract, but a concrete application of this57

Corollary 17.6. If Xn is a monotone sequence (that is, ∀ω, Xn(ω) either ↗
or ↘), then Xn → X a.s. iff Xn → X in probability.

Proof. If Xn → X in probability, then by part 2 of the theorem, there is a
subsequence Xnk → X a.s. But it’s a monotone sequence. The whole sequence
is sandwhiched in there. By the monotonicity, the full sequence Xn → X a.s.

So this is the end of the story about convergence almost surely and conver-
gence in probability.

18 Strong Law of Large Numbers

A word about the final exam. The problems on the final exam are emphasisizng
the laws of large numbers, since these are the most important applications of
this class. You will need the strong law of large numbers, which you will need
to solve the exam. This will get proved later. It’s the same is the weak law, but
only with almost sure convergence:

56such that you can not control Xnk on the big part of the probability space.
57well, still kind of abstract
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Theorem 18.1. If X1, . . . , Xn are i.i.d. (independent identically distributed)
random numbers with finite mean µ. Then Sn = X1 + ·+ Xn satisdy

Sn

n
→ µ a.s.

DECEMBER 3, 2007

Today we are going to have a look at the Strong Law of Large Numbers.
Before, we looked at the Weak Law of Large Numbers. Let’s compare. Let
X1, X2, . . . be independent identically distributed random variables with finite
mean µ. Let Sn := X1 + · · ·+Xn. The Weak Law of Large Numbers states that

Sn

n
→ µ in probability.

On the other hand, the Strong Law of Large Numbers states that

Sn

n
→ µ a.s.

But here, since (as we know) almost sure convergence implies convergence in
probability: In this sense, we use this notation SLLN (the Strong Law of Large
Numbers) is stronger than WLLN (the Weak Law of Large Numbers).

Today, we are going to prove SLLN under the assumption that the fourth
moment is finite.

Theorem 18.2 (Strong Law of Large Numbers under the condition that the 4th

moment is finite). Let X1, X2, . . . be independent identically distributed random
variables with mean µ, and assume EX4

k < ∞. Then, Sn = X1 + X2 + · · ·+ Xn

satisfies
Sn

n
→ µ almost surely.

In the next lecture, we’ll drop the condition on fourth moments.

Proof. • Step 1. First, we can assume, without loss of generality, that the
mean µ = 0. Indeed, let X ′

k = Xk − µ. Then,
∑n

k=1(Xk − µ)
n

=
Sn

n
− µ.

So assuming that µ = 0, we prove that

Sn

n
→ µ = 0 almost surely.

That is, we prove that for any ε > 0,

P
(∣∣∣∣

Sn

n

∣∣∣∣ > ε i.o.
)

= 0. (25)

91



• Step 2. We consider the fourth moment of Sn. What is this? Let’s make
calculation:

ES4
n = E(

n∑

k=1

Xk)4 (26)

=
∑

1≤i,j,k,&≤n

E(XiXJXkX&) (27)

We have n4 terms, but

Claim 18.3. Only 3n2 − 2n are nonzero.

Indeed, if i, j, k, + are distinct, then by the independence,

EX3
i Xj = EX3

i EXj = 0

because we assumed that the mean value is 0. Similarly, we have

EX2
i Xj = 0.

Of course, we have
EXiXjXkX& = 0

as long as i, j, k, + are different. By doing this calculation, we see that the
only terms that are not zero are of the form:

EX4
k and EX2

j X2
k .

Let’s consider how many of them we have in the formula (27). Observe,
we have n terms in EX4

k . To count the EX2
j X2

k , we choose 2 elements
from a n-letter alphabet, so the combination is

(n
2

)
.

Here, we have
(

n∑

k=1

Xk

)(
n∑

k=1

Xk

)(
n∑

k=1

Xk

)(
n∑

k=1

Xk

)

Once we choose a j and a k, the number of ways to choose two j’s and
two k’s is

(4
2

)
(we are picking one term in each factor in the expression

above).
Since (

n

2

)(
4
2

)
=

n(n− 1)
2

4× 3
2× 1

= 3n(n− 1),

we have n + 3n(n− 1) = 3n2 − 2n nonzero terms.

• Step 3. Every nonzero term is bounded by C = EX4
k . This statement has

meaning since we assumed that this value is finite.
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By Cauchy-Schwarz Theorem,

EX2
j X2

k ≤ (EX4
j )

1
2 (EX4

k)
1
2

= C.

By using this argument, the term EX2
j X2

k is also bounded by C.

Therefore ES4
n ≤ C × (3n2 − 2n) ≤ 3Cn2.

• Step 4. Now we will use Chebychev’s Inequality (we do have positive
random variables) to complete the proof. By Chebychev’s Inequality, we
have

P
(∣∣∣∣

Sn

n

∣∣∣∣ > ε

)
= P(S4

n > ε4n4)

≤ ES4
n

ε4n4
by Chebychev

≤ 3C

ε4n2
by Step 3

The series
∞∑

n=1

3C

ε4n2

connverges, so by the Borel-Cantelli Lemma,

P
(∣∣∣∣

Sn

n

∣∣∣∣ > ε i.o.
)

= 0.

In the next lecture, we are going to prove this theorem dropping the assump-
tion that EX4

k < ∞.

Question: Why do we need the fourth moment, as opposed to say the second
moment?

• Answer: The series in the proof won’t converge.

For the rest of the lecture, I’ll try to explain that this mean value E|Xk| < ∞
must hold for this theorem.

Proposition 18.4 (Finite mean is necessary). Let X1, X2, . . . be i.i.d. random
variables with infinite mean: E|Xk| = ∞. Then Sn = X1 + X2 + · · · + Xn

satisfies

P
(

Sn

n
converges to a finite number

)
= 0.
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Proof. An exercise: E|X1| = ∞ =⇒
∑∞

n=0 P(|X1| > n) diverges. Rough picture:
If E|X1| < ∞, E|X1| =

∫∞
0 P(|X1| > x) dx ≤

∑∞
n=0 P(|X1) > n), so we can’t

use this formula promptly.
Since Xk are identically distributed58,

P(|X1| > n) = P(|Xn| > n) for n = 1, 2, . . .

We have this condition:
∞∑

n=0

P(|Xn| > n) = ∞.

By Borel-Cantelli Lemma,

P(|Xn| > n i.o.) = 1.

So, let’s define two events:

A := {|Xn| > n i.o.} (Here, P(A) = 1)

and
B := {Sn

n
converges to a finite number}.

We prove that A ∩B = ∅. Why do we prove this statement? If this is true,
then

P(B) ≤ P(Ω \A) = 1− P(A) = 1− 1 = 0.

To prove that A ∩B = ∅, suppose (for a contradiction) that A ∩B / ∅.
Let’s consider this value

Sn

n
− Sn+1

n + 1
=

(n + 1)Sn − n(Sn + Xn+1

n(n + 1)
=

Sn

n(n + 1)
− Xn+1

n + 1
.

Then for some event,
Sn

n(n + 1)
→ 0.

On the other hand, ∣∣∣∣
Xn+1

n + 1

∣∣∣∣ > 1 i.o.,

so when n is large enough,
∣∣∣∣
Sn

n
− Sn+1

n + 1

∣∣∣∣ >
2
3

i.o.,

hence Sn
n is not Cauchy. I.e., Sn

n does not converge, which is a contradiction.
So the intersection of A and B is actually empty.

58Note the use of the same n in the RHS
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In the next next lecture, we prove SLLN without assumptions on fourth
moments.

DECEMBER 5, 2007

Today we are going to work on the strong law of large numbers without the
assumption on fourth moments.

Theorem 18.5 (Strong Law of Large Numbers). Let X1, X2, . . . be independent
identically distributed random variables with mean value E|Xi| < ∞ and EXi =
µ. Then, consider Sn = X1 + · · ·+ Xn, which satisfies

Sn

n
→ µ almost surely.

Proof. • Step 0. We can assume that Xi ≥ 0. Indeed, if we divide Xi

Xi = X+
i + X−

i

into a positive part and a negative part, then E|X+
i | < ∞ and E|X |

i− < ∞.

• Step 1 (truncation). We define

Xi =
{

Xk if Xk ≤ k
0 Xk > k

Then, we claim that P(Xk /= Xk i.o.) = 0. First, let’s prove this claim.59

We will show P(Xk /= Xk) = P(Xk > k) = 0. The series

∞∑

k=1

P(Xk > k) =
∞∑

k=1

P(X1 > k) ≤
∫ ∞

0
P(X1 > x) dx = EX1 < +∞.

By Borel-Cantelli Theorem, the claim is true.
If we prove that

Xi + X2 + · · ·+ Xn

n
→ µ almost surely,

then
Xi + X2 + · · ·+ Xn

n
→ µ

almost surely. There is a homework exercise: Show that EX1+···+Xn
n → µ.

In the following, let’s assume that Xk ≤ k. (To get a precise proof, we
have to interpret these numbers in terms of the truncated function. But
for this lecture, let’s just assume that this is true for all k).

59But, watch out for randomly-falling erasers!!!! !
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• Step 2. We have a lemma.

Lemma 18.6.
∞∑

k=1

var(Xk)
k2

< +∞.

Proof.

var(Xk) = E(X2
k)− (EXk)2

≤ E(X2
k)

=
∫ ∞

0
P(Xk ≥ x) d(x2)

=
∫ ∞

0
2xP(Xk ≥ x) dx

=
∫ ∞

0
1{x≤k}2xP(Xk ≥ x) dx.

So let’s calculate the summation
∞∑

k=1

var(Xk)
k2

since the variables are
identically distributed=

∞∑

k=1

∫ ∞

0

1{x≤k}

k2
2xP(X1 ≥ x) dx

Fubini=
∫ ∞

0

∞∑

k=1

1{x≤k}

k2
2xP(X1 ≥ x) dx

=
∫ ∞

0

∑

k≥x

1
k2

2xP(X1 ≥ x) dx

and as an exercise, show
∑

k≥x
1
k2 ≤

∫∞
x

dt
t2 = 1

x . Hence

∞∑

k=1

var(Xk)
k2

≤
∫ ∞

0
2P(X1 ≥ x) dx = 2 EX1 < +∞.

• Step 3. (Control along a subsequence)
Let k(n), a subsequence of k, be αn, where α > 1. In this proof, let’s
assume that αn is αn is an integer. Then, we claim that:

Sk(n)

k(n)
→ µ a.s.

For the proof of this claim, we also use the Borel-Cantelli Lemma. For
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each ε > 0, we compute
∞∑

n=1

P
(∣∣∣∣

Sk(n)

k(n)
− µ

∣∣∣∣ > ε

)
=

∞∑

n=1

P(|Sk(n) − ESk(n)| > ε · k(n))

≤
∞∑

n=1

var(Sk(n)

(εk(n))2

by Chebychev’s Inequality. Finally this can be written as

1
ε2

∞∑

n=1

1
k(n)2

k(n)∑

k=1

var(Xk).

On the other hand, consider

1
ε2

∞∑

k=1

var(Xk)
∑

n:k(n)≥k

1
k(n)2

.

Here, we changed the order of summation, and we’re not sure that these
values are the same. To ensure that they are the same, we need to check
for absolute convergence. We we check that the inner sum

∑

n:k(n)≥k

1
k(n)2

.

This is equal to (by replacing k(n) with αn)
∑

n:αn≥k

1
α2n

geometric progression

≤ 1
(1− d−2)k2

.

1
ε2

∞∑

k=1

var(Xk)
∑

n:k(n)≥k

1
k(n)2

≤ 1
ε2(1− d−2)

∞∑

k=1

var(Xk)
k2

By Borel-Cantelli Lemma,

P
(∣∣∣∣

Sk(n)

k(n)
− µ

∣∣∣∣ > ε i.o.
)

= 0

thus
Sk(n)

k(n)
→ µ almost surely.

We have to rearrange terms to be careful.

• Step 4. (Filling gaps in the sequence).
So, we sandwich. Want to know about all the ks. We want to know about
all of the Sk’s, so we estimate them

Sk(n) ≤ Sk ≤ Sk(n+1)
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Then, we have the following formula:

1
α
·
Sk(n)

k(n)
=

Sk(n)

k(n + 1)

because we defined k(n) = αn. And

1
α
·
Sk(n)

k(n)
=

Sk(n)

k(n + 1)
≤ Sk

k
≤

Sk(n+1)

k(n)
≤ α ·

Sk(n+1)

k(n + 1)

Thus
1
α
·
Sk(n)

k(n)
→ µ

α
almost surely.

Hence,
µ

α
≤ lim inf

Sk

k
≤ lim sup

Sk

k
≤ αµ

with probability one.
Since α > 1 is arbitrary, let α → 1. Then, the limit

lim
Sk

k

exists, and is equal to µ almost surely.

If you have some question about this kind of thing Xk or X, I have some
memos. I also have some memo about the bound of integration. We can have
discussion after.

Lecture on Friday was cancelled.

JANUARY 7, 2008

We are not televised this quarter. Welcome back, to the survivors of the
past quarter, and the past storm. So this time, we are offering two quarters of
probability theory. There is A and B, and no C. So what I thought to do is to
cover the other major theorem of probability theory, the Central Limit Theorem
(or rather Theorems). The second part will be the theory of martingales. Will
leave out Brownian motion and Markov chains, which would normally be covered
in 235C. There no instructor for 235C.

The Central Limit Theorem will have prerequisite characteristic function.
So, we’ll need the Fourier transform, so we’ll need to know all basic operations
with complex numbers. We will not rely on the whole undergraduate complex
analysis class, if you have not taken one. But you will need to know how to
manipulate with things like Euler’s formula

eit = cos t + i sin t.

We will need the first two or three weeks of undergraduate complex analysis.
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The textbook is another painful problem for us. I don’t want to push you to
buy another book. We’ll keep the current textbook. I will interpolate between
the text by Gut and the text by Durrett. In Durrett, the lectures will mostly
follow chapters 2 and 4, which is Central Limit Theorems and Martingales.
There are similar chapters in Gut. You will not need to buy the Durrett text.
It will be on reserve in Shields Library. If I assign homework based on some
textbook, it will be from Gut. My lectures will stay between Durrett and Gut.

The second reason you do not want to buy the book is you will find a link
to these notes. Find the link on my webpage.

The assessment is a bit different. 30% for HW, 30% for MT, and 40% for
final. There will be no late homework at all. Instead, we’ll drop one lowest
homework. I ask you to put the HW on the table before class, or submit to
my office door sufficiently-before class, because I will give to the TA directly
after class. Please work together, but write individually.

My office hours are Monday 3:30-4:30. This is just for this class. If you are
having troubles with this office hours, you can come at the same time on Friday,
the priority will be for the calculus class. On the webpage, you’ll find all of the
information just spoken. The MT and final will be take-home again.

Let’s do a little review and preview of the course. Recall random variables
and basic quantities associated with random variables. Let X be a random
variable60. There are two measures that tell us much about a random variable.
We’ll denote the mean EX = µ, and the variance var(X) = E(X − EX)2 = σ2.
What variance measures is the distance from X to its mean. The square is to
ensure positivity.

The mean scales just fine. If you multiply X by a, the mean is aµ. For
variance, you’ll pull out a square: a2. This is not as nice, so sometimes the
variance is replaced by the standard deviation of X, which is just

√
var(X) = σ.

So, we have these two numbers µ and σ.
We prefer to work with random variables with µ = 0 and σ = 1. This is

called standard normal, and we say that normalization is the process of taking a
random variable X and converting it to this form. Take X and consider instead

X − µ

σ
.

This is a random variable with mean 0 and variance 1. Still remember this?
Most of the time in probability theory, we work with sums of independent

random variables instead of just one random variable. So we have X1, X2, and
so on. Let these be independent, identically distributed random variables with
mean µ and variance σ2. This is a typically object that we study. Actually, we
consider their sum Sn = X1 + · · ·+ Xn. All of these random variables, they are
copies of some random variable X, and we “have access” to their values. For
instance, we can record the results of coin flips. By linearity of expectation,

ESn = nµ,

60r.v., for random variable, not my initials!
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and the variance is (in general) not linear. The variance is linear when the
random variables are independent, so

var(Sn) = nσ2,

so
st.dev(Sn) =

√
n · σ.

Now this innocent computation is very powerful, actually. It shows that the
mean of the sum, the typical value, is linear in n, but the distance to the sum is
much smaller (being

√
n). The amount it deviates about its center shrinks. Most

of the time, it stays within a small interval
√

n ·σ. The bigger the n, the smaller
this interval around its mean. This is called a “Concentration phenomenon”.
This can be stated (it’s half the proof of) the Weak Law of Large Numbers.

We apply Chebychev’s Inequality, that tells us what’s the probability that
a random variable is within some quantity of its mean:

P(|Sn − nµ| > t ·
√

nσ) ≤ 1
t2

.

Now, for the Law of Large Numbers, we need something like ε, so let T be s.t.
t ·
√

nσ = εn. Then, t = ε
√

n
σ , so then we rewrite Chebychev’s inequality as

P(|Sn − nµ| > εn) ≤ σ2

ε2n

Maybe we divide by n,

P(|Sn

n
− µ| > ε) ≤ σ2

ε2n
So as n goes to ∞, this quantity gets small. This is called a deviation inequality,
because it measures how a random variable Sn/n deviates from its mean. This
implies the Weak Law of Large Numbers. This actually is the WLLN. That is,
for every ε,

P(|Sn

n
− µ| > ε) → 0

as n →∞. So Sn
n → µ in probability.

So I just wanted to show what is the power of the fact given in our simple
concentration at the beginning. So, this was a little review of what we did.
Now, we did it in the last lectures under a finite variance condition. In the last
lectures, the variance condition was dropped. But most of the time, you’re fine
with this.

Now, what are we going to do next? Central Limit Theorems. Here’s a
preview of Central Limit Theorems.

19 Central Limit Theorems

We already know that Sn has mean nµ and variance nσ2. This alone implies
WLLN. This alone implies concentration. We only used the nature of Sn (that
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it is the sum of independent random variables) once. What’s most remarkable
(and this is what we’ll show) is that the Central Limit Theorems (CLTs) allow
us not only that Sn concentrates around its mean, but that it’s very close to a
standard normal distribution. So in some sense, Sn ≈ N(Nµ, nσ2), a Gaussian
(or normal) random variable with mean nµ and variance nσ2. So, the keyword
here is “normal”. If you’ve seen this for the first time, this is counter-intuitive
in some sense. If you start with any random variables, once you sum them up,
you will get the same distribution. In physics, this is called “universality”. The
large-scale behavior should be the same.

More precisely, what do we mean? We need first, to normalize. So, we make
Sn into a random variable with zero mean and variance one. So,

Sn − nµ√
nσ

→ N(0, 1)

converges to the standard normal variable as n →∞ (“in distribution”). We’ll
talk about why this is not one of the standard convergences.

Apart from just curiosity of this phenomenon, this is very useful in ap-
plications to deviation inequalities. What does this new information about
convergence to the normal random variables say. Let’s try to see what is the
consequence of this.

Now we know that

P(|Sn − nµ√
nσ

| > t) ≈ P(|g| > t),

where g is N(0, 1). So, this right hand side can just be computed. We have a
density for g. So the right side is

2 · 1
2π

∫ ∞

t
e−x2/2 dx.

If you ignore all of the constants in front, then this is

≈ e−t2/2,

which is Proposition 6.9. Let t be such that t
√

nσ = εn. So t = ε
√

n
σ , as before.

So what we get is
P(|Sn − nµ| > εn) ∼ e−ε2n/2σ2

.

Maybe we’ll also divide by n on both sides to turn it into the form of WLLN:

P(|Sn

n
− µ| > ε) ∼ e−ε2n/2σ2

,

and this is our new deviation inequality. So let’s compare. What’s the difference
of this deviation inequality to the previous one? Let’s ignore everything except
n. What we see in the previous statement is linear in n. The one here is much
stronger since it is exponential in n, much stronger than inverse-linear.
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This should not be surprising given the CLT, because the Gaussian decays
at an exponential rate. This is just one application of the CLT. There are many
more applications.

We will prove the CLT for Bernoulli random variables, actually for the flip
of a coin. It will be useful if you get your hands on a very specific case. So we’ll
do this central limit theorem for Bernoulli random variables first. It is called
the De Moivre-Laplace Central Limit Theorem. This is a section that will take
us about a lecture.

19.1 CLT for independent Bernoulli random variables Xn

To be specific, we’ll pick P(Xn = 0) = P(Xn = 1) = 1
2 . Therefore, the sum

Sn = X1 + · · ·+ Xn is a Binomial random variable with parameters (n, 1
2 ), the

number of heads in n coin tosses.
It was no surprise that De Moivre was interested in Bernoulli random vari-

ables. He was a gambler and would sell knowledge about gambling. So, it was
important for him. So this is our situation and how can we estimate the sum
of the Bernoulli random variables? What is the probability that Sn is equal to
some number, say k? What is P(Sn = k)? There are

(n
k

)
was to choose the

position of the heads. The probability of that specific arrangement is 1
2n . So,

P(Sn = k) =
(

n

k

)
2−n, k = 0, 1, . . . , n.

The sum of all probabilities is one:

n∑

k=0

P(Sn = k) = 1.

So, the corollary, which doesn’t have to do with probability, but rather combi-
natorics is:

Corollary 19.1.
(n
0

)
+

(n
1

)
+ · · ·+

(n
n

)
= 2n.

So, what is the smallest binomial? For k = 0 or n. Now, what we are trying
to prove in the CLT is something like “the Binomials form a bell-shaped curve.”
So the biggest binomial is the middle binomial

( n
n/2

)
. This agrees, in principle,

with the LLN (this is not a mathematical fact), that Sn should be concentrated
around its mean n

2 . This is philosophical. So we’ll prove this next time. We’ll
do an asymptotic analysis of binomials.

JANUARY 9, 2008

I forgot to mention last time that the TA will also have office hours. Tuesday
1-2. This info is also on my webpage.

We have started De Moivre-Laplace Central Limit Theorem. So in general,
when you see the Central Limit Theorem, there is a random variable that is

102



approximated by some normal random variable. We’ll start with the Binomial
distribution. The setting is as follows:

Let X1, X2, . . . be independent Bernoulli random variables. For simplicity,
we will only cover the case where the probabilities are equal, namely P(Xn =
0) = P(Xn = 1) = 1

2 . This is, for instance, the coin toss. We consider their sum
Sn = X1 + · · ·+ Xn. This shows you the number of heads. This is a Binomial
random variable with parameters (n, 1

2 ).
Before we even state the theorem, I’d like to cover it. Our goal will be

to find a useful approximation of the distribution of Sn. We know the mean
and the variance. We know that ESn = n

2 by linearity. Similarly, the variance
var(Xn) = 1

4 , so var(Sn) = n
4 . Here, we use independence. So st.dev(Sn) =

√
n

2 .
So the mean is linear in n, but the concentration winds tightly. Our goal is to do
something stronger than this. We want to approximate the whole distribution
of Sn.

How do we compute the distribution of Sn? Let’s do it in a straightfor-
ward way, without any approximation. What’s the probability of k heads?
P(Sn = k) =

(n
k

)
· 2−n, where k = 0, 1, . . . , n. This is a distribution. Sometimes

you’re satisfied with this formula. But, in practice, we want something more.
We usually ask about ranges of successes. We don’t ask, out of 100 experi-
ments, what are the chance over 54 successes? We want some range (like 50-60)
successes. Summing up binomials is not an easy task. So, we want a useful
asymptotic formula for the binomials

(n
k

)
. That’s the first step. Once we do

this, it will become evident how to sum.
The binomials have some kind of pattern to them. The middle binomial is

the largest. Then they settle down from the middle in some sort of “smooth”
way. The curve they make is a normal curve (that’s the content of the theorem).
Here, we have a discrete situation, but in the limit we have a curve. Hopefully
our asymptotics will discover a bell-shaped curve.

Let k = tn for some t ∈ (0, 1). We think of k as a proportion of n. Why
do we want to do this? We think of t as about 1

2 when we are “in the middle”.
What do we know about the binomial? Not much. We know

(
n

k

)
=

n!
k!(n− k)!

and that’s about it. Factorials are not fun to add. We use Stirling’s Approx-
imation: n! ∼

√
2πn(n/e)n. So n! is about nn up to a correction. Whenever

we say that an ∼ bn (are asymptotically equivalent) means that an/bn → 1 as
n →∞.

We know other formulas for more preciseness. We’ll need

n! =
√

2πn(n/e)neλn,

where
1

12n + 1
≤ λn ≤

1
12n

.

You can find this on Wikipedia.
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We’ll use the Stirling Approximation. Let’s work term-by-term. Then,
(

n

k

)
∼

√
2πn

2πk · 2π(n− k)
· e−n

e−ke−(n−k)
· nn

kk(n− k)n−k

As a side computation, we note that n
k(n−k) = 1

t(1−t)n . We’ll use this for the
first piece above. The second piece cancels out completely. For the third term,
we ma write nn as nknn−k. So, the third term nn

kk(n−k)n−k will be nknn−k

kk(n−k)n−k =
1

tk(1−t)n−k = 1
[tt(1−t)1−t]n .

So, the bottom line is
(

n

k

)
∼ 1√

2πnt(1− t)
· 1 · 1

[tt(1− t)1−t]n
.

We’ll take logarithm of this.
(

n

k

)
∼ 1√

2πnt(1− t)
· exp(nH(t)), (28)

where H(t) = −t log t − (1 − t) log(1 − t). On purpose, I put the minus sign
in front so to take care of the negative values of logarithm. This function H is
called the Entropy function. It appears in physics and in information theory.
It’s a measure of the complexity of a source that shoots out letters. It’s a very
remarkable function, defined on [0, 1]. The function is symmetric about 1

2 .

[Function H is graphed.]

It is a positive function. The maximum is attained at 1
2 , with value ln 2.

Once we note that H is explicit (depends only on t), we can do something.
We can estimate the middle binomial

( n
n/2

)
right away:

(
n

n/2

)
∼

√
2

πn
· 2n.

So, the corollary to this is

Corollary 19.2. P(Sn = n
2 ) ∼

√
2

πn

because we already have the 2n cancels. So, it is unlikely that you have
exactly half heads. But it’s not that bad actually, because this does not decay
exponentially. The middle binomial takes a big chunk of the sum (up to 1).

This approximation to the binomial given in (28) is actually very useful in
other places.

We want the decay from the middle binomial: That is, what is
(n

k

)
∼?

for k = tn and t = 1
2 + o(1). We know what happens to H at 1

2 . We can
use Taylor’s expansion (make this an exercise) around t0 = 1

2 to show that
H(t) ∼ ln 2− 2(t− 1

2 )2 for t = 1
2 + o(1).

Question: Are you using ln and log differently?
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• Answer: We are not distinguishing: All logarithms today are natural.

Then, for such t, we can write the asymptotics very easily. We use the
formula (28) very easily.

(
n

tn

)
∼

√
2

πn
· exp(n ln 2− 2(t− 1

2
)2)

=
√

2
πn

exp(−2n(t− 1
2
)2) · 2n.

What does the formula here teach us? Once we’re off the middle binomial,
there is an exponential decay. Most of the mass is concentrated at the middle
binomial. So there is an exponential decay off t0 = 1

2 .
Now, what is our t here? The Central Limit Theorems talk about normalized

random variables. So, our t will have this form: We will use this for
(n

k

)
, where

k has the form
k =

n

2
+ x

√
n

2
that is, k is the mean plus some multiple of the standard deviation. This will
be our tn. Then,

t =
1
2

+
x

2
√

n
.

Thus (t − 1
2 )2 = ( x

2
√

n
)2 = x2

4n . Multiplying by 2n, we get 2n(t − 1
2 )2 =

2n( x
2
√

n
)2 = x2

2 . So
(

n

k

)
∼

√
2

πn
· e−x2/2 · 2n.

Our k was a little off the mean, and now we see the decay as an exponential, as
a Bell-shaped curve. So, we just proved the Local Limit Theorem.

Theorem 19.3 (Local Limit Theorem). Let Sn be Binomial (n, 1
2 ). Then,

P
(

Sn − n/2√
n/2

= x

)
∼

√
2

πn
· e−x2/2.

There’s only one step to the true Central Limit Theorem. Here, we’re talking
about exact numbers of successes. The true theorem will talk about ranges. Now
we go toward the true limit theorem. So we need to consider the range of the
values

P(a ≤ Sn − n/2√
n/2

≤ b).

What’s that?

p := P(a ≤ Sn − n/2√
n/2

≤ b) =
∑

a≤xk≤b

P(
Sn − n/2√

n/2
= xk),
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where xk = k−n/2√
n/2

. This is an arithmetic progression. Its step (the mesh) is

∆x = xk − xk−1 =
2√
n

.

When p ∼
∑

a≤xk≤b

√
2

πne−x2
k/2. by the Local Limit Theorem. We have a small

mesh, we can replace this by an integral.

p ∼
∑

a≤xk≤b

∆x · 1√
2π

e−x2
k/2 ∼ 1√

2π

∫ b

a
e−x2/2 dx.

So we proved the De Moivre-Laplace Central Limit Theorem.

Theorem 19.4 (De Moivre-Laplace Central Limit Theorem). Let Sn be Bino-
mial random variable with parameters (n, 1

2 ). Then, for every a < b, we have

P
(

a ≤ Sn − n/2√
n/2

≤ b

)
→ P(a ≤ g ≤ b) =

1√
2π

∫ b

a
e−x2/2 dx,

where g is N(0, 1).

So there are three exercises:

1. Convergence is uniform in a and b.

2. The CLT holds for arbitrary Bernoulli random variables, that is for arbi-
trary p rather than 1

2 , but it’s not uniform anymore. (It will be Poisson.)

3. Do the rigorous analysis of “∼”. How does ∼ play with our integral? You
want to be extra-careful.

All of these are covered in Shiryaev (Probability).
Finally, I’ll show you two slides. The first is an experiment for Binomial

distribution. You see minimal number of trials is 10, with probability p = 1
5 .

Here, you already see the CLT manifest itself. The second is a Bell-shaped
curve. Note P(a ≤ g ≤ b) is almost 1 if a < 0 and b > 0. If a = −2 and b = 2,
then P = 0.96.

JANUARY 11, 2008

The HW for next week is already posted. Due Wednesday.

20 Convergence in Distribution

We’re starting a topic that’s called the convergence in distribution. It roughly
corresponds to section 2.2 in Durrett’s book. We just finished this De Moivre-
Laplace CLT. Let’s look back and try to see... It’s a theorem about convergence.
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The Binomial distribution, properly normalized, converges to the normal distri-
bution. But in what sense is this convergence? We studied at least two notions
of convergence.

Is this convergence almost sure convergence? Why is this not a.s. conver-
gence? Sn is a binomial random variable. The CLT says that Sn−n/2√

n/2
→ g,

where g is N(0, 1). Almost sure convergence would say that this convergence
happens for all ω ∈ Ω. We can define Ω to be different in each case. In the
left, it can be defined to be a discrete space. So, the convergence in the CLT
is not almost sure convergence. For the same reason, it’s not the convergence
in probability. Sn and g may (and have to) be defined on different probability
spaces.

The convergence in CLT is the convergence in distribution. The alternate
name (which Durrett follows) is weak convergence. It is the weakest notion of
convergence of random variables61.

Definition 20.1. Let X1, X2, . . . be random variables with distribution func-
tions62 F1, F2, . . ., and let X be a random variable with distribution function F .
We say that

Xn → X in distribution as n →∞

(or sometimes write Xn
d.→ X) if

Fn(x) → F (x)

for all x that are points of continuity of F .

This “points of continuity” for F is trivial for Gaussians.
What is the advantage of this notion? It is defined only using the distri-

bution functions, not the values of the random variables themselves. So this
convergence only depends on the distributions of X, X1, X2, . . ., not on their
actual values (unlike in a.s. and in probability convergences).

We have the discrete probability space. If we shuffle around the values of X,
it won’t change convergence in distribution. Because it relies on the distribution
functions, sometimes people write

Fn → F weakly.

Or even more, people would write63

Pn → P weakly.

Sometimes L is used for the distribution, so this may get used as well. The
literature is very diverse.

There is a deep connection between weak convergence in Banach spaces
and the weak convergence here. You can consider the Banach space X of all

61weakest that we will study.
62Recall distribution functions FX(x) = P(X ≤ x).
63Recall Pn(A) = P(X ∈ A)
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measures µn on (Ω,F). They are not required to be probability measures (or
even positive). We need this to be able to consider them as vectors. Then the
linear functionals f on X:

f(µn) =
∫

Ω
f dµn

are functions on Ω. (There’s some notion of topology here.)
This is certainly an action of linear functionals. Then µn → µ weak means

f(µn) → f(µ) ∀ f . In particular, if Ω = R, and f = 1(−∞,x],

f(µn) = µn(−∞, x]

and its limit will need to be

f(µ) = µ(−∞, x].

In our situation, this matches Pn → P weakly is the same as to say Pn(−∞, x] →
P(−∞, x]. From this we read directly P(Xn ≤ x) → P(X ≤ x).

So the name of weak convergence comes from Hilbert and Banach space
theory. This is not a rigorous argument, but just an indication of why we have
the name.

In a more familiar form, and equivalent definition of the weak convergence
is: Xn → X is distribution if64 P(Xn ≤ x) → P(X ≤ x) for all x such that
P(X = x) = 0.

Also equivalently, when you have a one-sided inequality, you can get a two-
sided inequality: P(a ≤ Xn ≤ b) → P(a ≤ X ≤ b) for all a ≤ b such that
P(X = a) = P(X = b) = 0.

Examples:

1. One example is of course the De Moivre-Laplace CLT. It says (in our
situation), the convergence

Sn − n/2√
n/2

→ g in distribution.

In words, we say that “the Binomial distribution (n, 1
2 ) properly normal-

ized converges weakly to the standard normal distribution.”

2. Even before we clarify the implications between the difference conver-
gences, we want to check the convergence of distribution for the Law of
Large Numbers.
In the SLLN,

Sn

n
→ 1

2
almost surely (thus in probability as well)

64well, if and only if
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Though we will have a theorem later, let’s just directly check that the
convergence in distribution holds.
Convergence in probability is the statement

P(|Sn

n
− 1

2
| > ε) → ε) → 0 as n →∞.

We’re interested in
P(

Sn

n
≤ x).

What does it converge to? x = 1
2 will be a singularity point.

Fn(x) = P(
Sn

n
≤ x) =






0, x < 1
2

1
2 , x = 1

2
1, x > 1

2 .

This carries over to when Xi is a symmetric random variable.
When we say that it should converge to 1

2 is distribution, we think of it
as a constant function. So

F (x) = P(
1
2
≤ x) =

{
0, x < 1

2
1, x ≥ 1

2 .

So, let’s plot these two functions limFn and F . Indeed, Fn converges to
F except at x = 1

2 , which is a point of discontinuity of F .
We have to care about the points of discontinuity. Each Fn was a distribu-
tion function, but the limit of them is not a distribution function (because
it is not right-continuous).

I may also mention one exam exercise.

Lemma 20.2 (Uniqueness). If Xn → X in distribution, then the distribution
of X is uniquely defined.

In other words, the limit is unique. I’ll leave it as an exercise.

JANUARY 14, 2008

One announcement about the HW. Regarding Proposition 6.9. There is a a
problem in the statement. The correct form of this proposition is:

Proposition 20.3.
(

1
x
− 1

x3

)
e−x2/2 ≤

∫ ∞

x
e−y2/2 dy ≤ 1

x
e−x2/2

for all x > 0.
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Actually, one only uses this for x large. It only makes sense for x > 1.
In the exercise, x is large. In the exercise, n is large. I’ll put this correction

online.
Today, we’ll clarify the connections of the different types of convergence. We

know at least three main types of convergence of random variables.
Recall that Xn → X:

• almost surely if P(Xn → X) = 1

• in probability if ∀ε > 0, P(|Xn −X| > ε) → 0

• in distribution if Fn(x) → F (x) for all points of continuity of F . Equiva-
lently, P(Xn ≤ x) → P(X ≤ x) whenever P(X = x) = 0.

We’ve seen almost sure convergence in SLLN. We’ve seen convergence in
probability in WLLN. We’ve seen convergence in distribution in the CLT. So,
now we’d like to clarify what implies what. Almost sure convergence implies
convergence in probability. The converse does not hold, though there is some
statement about subsequences. We’ll show that convergence in probability im-
plies convergence in distribution.

Proposition 20.4. Xn → X in probability =⇒ Xn → X in distribution.

We’ll do it directly. We know that P(|Xn −X| > ε) → 0.

Proof. Assume that we know that Xn ≤ x. What can we say about X itself?
Then either X ≤ x+ε or |Xn−X| > ε. The probability of the event |Xn−X| > ε.
But we know that this unlikely, or an exceptional event. So, we may say that

P(Xn ≤ x) ≤ P(X ≤ x + ε) + P(|Xn −X| > ε).

We know that P(Xn −X| > ε) → 0 as n →∞. So, let’s take a lim supn→∞ on
both sides. Then,

lim sup
n

P(Xn ≤ x) ≤ P(X ≤ x + ε)

since the second term doesn’t even depend on n. Now, allow ε → 0. Hence,

lim sup
n

P(Xn ≤ x) ≤ P(X ≤ x),

which is half of what we need to prove. Note that on the right sides, we used
the continuity.

For the other half, we need a formula like this:

P(Xn ≤ x) ≥ P(X ≤ x− ε)− P(|Xn −X| > ε).

Let’s call this an exercise. Move the negative term to the other side and argue
by cases.

Then we take a limit as n →∞. Taking a lim inf this time, the second term
goes to zero again.

lim inf
n

P(Xn ≤ x) ≥ P(X ≤ x− ε).
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Let ε → 0. Now, we can’t use the right continuity, but we do have continuity of
probability. So, we have

lim inf
n

P(Xn ≤ x) ≥ P(X < x),

but since P(X = x) = 0, we don’t have to worry about this value.

Convergence in distribution can not imply convergence in probability. This
can’t make sense, because probabilities P can be defined on different outcome
spaces. Nevertheless, we can take random variables converging in distribution
and put them into a common probability space where they converge almost
surely (actually, point-wise).

Theorem 20.5 (Skorokhod’s Representation Theorem). Suppose Xn → X in
distribution. Then there exist random variables Yn distributed identically with
Xn and a random variable Y distributed identically with X, and such that

Yn → Y everywhere65 (thus a.s.)

Skorokhod was a Ukrainian mathematician. He is now at Michigan State
University. Recall that there is a canonical representation of a random variable
X on the probability space Ω = [0, 1], F = {Borel sets}, P = uniform (Lebesgue) measure.
How do we do that? Let F (x) be the distribution function of X. We just invert
the distribution function. Take an x ∈ Ω = [0, 1] and take66 Y (x) := F−1(x).
Then Y has the same distribution as X. Y is distributed identically with X.

P(Y ≤ y) = P(x ∈ [0, 1] : F−1(x) ≤ y)
= P(x ∈ [0, 1] : x ≤ F (y))
= F (y) = P(X ≤ y).

So, we’ll prove Theorem 20.5:

Proof. Consider the canonical representation of Xn and X. Fn is the distribu-
tion of Xn and F is the distribution of X. First, we’ll do a little bit of “wrong
proof”. Assume that Xn → X in distribution.

Then Fn(x) → F (x) for almost all x. We apply the inverse on this. Then
F−1

n (x) → F−1(x) for almost all x. Then Yn(x) → Y (x) for almost all x.
Redefine Yn(x) = 0, Y (x) = 0 for all x where this convergence fails. This will

not change the distribution function, since this changes only countably many
points. But, it makes these random variables converge everywhere.

So, why is this proof wrong? The problem is in taking preimages. The
implication we implicitly used is not justified. We’ll try to justify it now. We
have the preimages defined with the supremum

F−1(x) = sup{y : F (y) < x}.
66In general, we have to decide what we do about points of discontinuity. It’s obvious

what to do with points of discontinuity. When the function is flat, we have to decide to take
something. For this, we decided the left endpoint. So, this is F−1(x) = sup{y : F (y) < x}
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So assume that we have a flat region. Consider the “flat regions” defined as
follows: for every x, we look at the intervals with endpoints ax and bx:

ax = F−1(x) = sup(y : F (y) < x)
bx = inf(y : F (y) > x).

Exceptional sets: the set of all flat regions is

Ω0 = {x : (ax, bx) /= ∅}.

So we record all the points where we have a flat region. As an exercise,
Ω0 is countable. Hence P(Ω0) = 0. Recall that this notation P here is the
Lebesgue/canonical measure.

We know that Fn(x) → F (x) for all x that are points of continuity of F . We
want to show F−1

n (x) → F−1(x) for all x /∈ Ω0. Let’s leave as an exercise these
two things:

1. lim inf F−1
n (x) ≥ F−1(x) for x /∈ Ω0.

2. lim supF−1
n (x) ≤ F−1(x) for x /∈ Ω0.

Let me sketch the first fact. It suffices to show that an infinite tail is > y. So,
it suffices to show that ∀y < F−1(x), y < F−1

n (x) for sufficiently large n. Now
we can truly invert things: So, Fn(y) < x. By continuity, this implies (exercise)
that F (y) < x. By inverting, this implies y < F−1(x). We’ll leave part (2) as
an exercise.

JANUARY 16, 2008

I will basically discuss two results. The first really important result today
is the Continuous Mapping Theorem. Let me remind you that Xn → X in
distribution if the distribution functions Fn(x) → F (x) point-wise at the points
of continuity of F . We can’t expect more than that because of the classic
example: Xn = 1

n and X = 0.

Theorem 20.6 (Continuous Mapping Theorem). Let Xn, X be random vari-
ables.

(i) Let f : R → R be a continuous function. Then Xn → X in distribution
implies

f(Xn) → f(X) in distribution67.

(ii) Moreover68, let f : R → R be a measurable function and consider the
set69 Df = {x ∈ R : f is discontinous at x}. If P(X ∈ Df ) = 0, then
f(Xn) → f(X) in distribution.

68the harder part
69measurable, exercise.
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What this says is that f might have discontinuities, but the random variable
“does not feel” these discontinuities. The most elegant proof of this that I know
uses the Skorokhod Representation Theorem. Let me briefly remind you: One
may have Xn → X in distribution, but it is unreasonable to expect convergence
almost everywhere. However, we can find random variables Yn with same distri-
butions as Xn such that here we have convergence everywhere. So, there exist
Yn, Y such that

Yn(ω) → Y (ω) ∀ω ∈ Ω

where Yn has identical distribution to Xn and Y has identical distribution to
X.

Proof. (i) Convergence in distribution only depends on information on distri-
bution functions. f(Yn) → f(Y ) for all ω ∈ Ω, by continuity of f . We
have f(Yn) → f(Y ) in distribution. But remember that f(Yn) has the
same distribution as f(Xn). So, f(Xn) → f(X) in distribution.

(ii) If f is not continuous, how do we make that first jump? You have conver-
gence not everywhere, but on a set of full measure.
Suppose f has some discontinuities. Then

Yn(ω) → Y (ω)∀ω

implies
f(Yn) → f(Y )∀ω

fails where? It fails on discontinuties. But

P(ω : f is discont. at Y (ω)) = 0

(Note, by Skohorkhod, we can write P(Y ∈ Df ) = 0.) These are the only
points where we can not jump in the implication. On the complement, we
can make this step. So we can conclude

f(Yn) → f(Y )

almost everywhere. Then we can proceed as before.

It is always a good idea to see that all assumptions are necessary. So please
check that if the condition P(X ∈ Df ) = 0 does not hold, find a counter-
example.

Is the convergence in the theorem any stronger? Suppose that Xn → X in
probability. Suppose f : R → R is continuous. Now, is it true that f(Xn) →
f(X) in probability? I think it should work, basically with no tricks. Let’s talk
about this after class. It’s dangerous to talk on-the-fly and then get something
wrong.

The second important result gives you basically three ways to define conver-
gence in distribution. One definition was already given to you. You can view
the next theorem as two more equivalent definitions. So let me write it down.
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Theorem 20.7 (Characterization of convergence in distribution). The follow-
ing three statements are equivalent.

(i) Xn → X in distribution.

(ii) If f is a continuous and bounded70 function, Ef(Xn) → Ef(X).71

(iii) P(Xn → A) → P(X ∈ A) for any Borel set A such that P(X ∈ ∂A) = 0.

Recall, ∂A = A\interior(A) = {limits of sequences of points in A that are also limits of sequences of points in Ac}.

Proof. As is customary, we’ll show each condition implies the other.

• Let’s show (i) ⇒ (ii). Suppose that Xn → X in distribution. This is
not very hard, because we will use a result of measure theory. We’ll use
the Skorokhod Representation Theorem. We have Yn → Y . This is step
number 1.
Step number 2. As in the previous theorem, f(Yn) → f(Y ) everywhere,
since f is continuous. To show (ii), it’s enough to show it for the Y ’s. We
need to show

Ef(Yn) → Ef(Y ).

Since f is bounded, we can apply the Dominated Convergence Theorem
to obtain

Ef(Yn) → Ef(Y ).

The only thing that we used here is that the |f(Yn)| are bounded by
something which is integrable:

max
x∈R

|f(x)|.

Therefore, we have immediately that

Ef(Xn) → Ef(X).

We relied on a nice result from measure theory, which made this easy.

• Let’s proceed. (i) ⇒ (iii).
Let’s try to mimick the proof we just presented. If we examine the left
hand side,

P(Xn ∈ A) = Ef(Xn)

where f = 1A. If f is continuous, we’d be done. I will, nonetheless, keep
this choice of f . I will show

f(Yn) → f(Y )
70If f is unbounded, then we can see that the sequence can be unbounded.
71This must hold for every bounded continuous f .
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almost everywhere, as in the proof of the Continuous Mapping Theorem.
The convergence does not occur on a null set. Then, we can sprint towards
the end of the result as before, using Dominated Convergence Theorem,
since f is an indicator (thus bounded by 1).
Therefore, we immediately integrate them by DCT, and

Ef(Yn) → Ef(Y ).

Using the same argument as before, Ef(Yn) = Ef(Xn) and Ef(X) =
Ef(Y ). Thus,

Ef(Xn) → Ef(X).

Recall that f is an indicator, so

Pf(Xn ∈ A) → Ef(X ∈ A).

• Now, if you’re bored, the next part is just one line. (iii) ⇒ (i).
Why? Choose A = (−∞, x]. Now, ∂A = {x} is a singleton. What we
have immediately is

P(Xn ∈ (−∞, x]) → P(X ∈ (−∞, x])

for all x such that P(X = x) = 0.
The last condition says that x is a point of continuity for the distribution
function of X.

• Let us prove (ii) ⇒ (i).
Let’s lie again in the most horrible way. Let’s consider a discontinuous
function and dream that it is continuous. Let’s consider the indicator
f = 1(−∞,x].
Suppose that we had the property (ii) for this discontinuous function.
Then, it would immediately imply

Fn(x) = P(Xn ∈ (−∞, x]) → F (x) = P(X ∈ (−∞, x]).

We will approximate f be a new function fε, which is almost our indicator
(in the interval [x, x + ε], fε is a straight line from 1 to 0). Then

P(X ≤ x) = Ef(X) ≤ Efε(X),

just by looking at the graph, this is obvious.
Moreover, you also have the inequality

Efε(X) ≤ P(X ∈ (−∞, x + ε])

Then, by (ii),
Efε(Xn) → Efε(X),
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since E is continuous.
Then,

lim sup P(Xn ≤ x) ≤ Efε(X) ≤ P(X ≤ x + ε)

Then, let ε → 0.

All of the proofs here are easy, and there are actually different orders that you
can prove these in. All of the individual proofs are maybe three lines each.

JANUARY 18, 2008

A sequence of random variables Xn → X in distribution ⇔ Ef(Xn) →
Ef(X) for every bounded and continuous f . Sometimes, some literature defines
this as the convergence in distribution. This is sometimes more useful than the
standard definition. Let’s see why.

As an example, we can take f(x) = |x|p to be a polynomial (I’ll take absolute
value). So, if Xn → X in distribution, then

E|Xn|p → E|X|p for all 0 < p < ∞.

these are called the absolute moments. In particular, if you take the pth root,
then you get the Lp norm, so

‖Xn‖Lp → ‖X‖Lp .

The f here is not bounded. We can probably fix this by the truncation.
Above in the equivalence, we don’t get either direction by taking out the

boundedness property.

20.1 Helly’s Selection Theorem

This completes our picture of convergence. As we know, almost sure conver-
gence implies convergence in probability, which in turn implies convergence in
distribution. If all are on the same probability space, then Skorokhod’s implies
full circle. Helly’s Selection Theorem, tells us that it’s almost true that for every
sequence of random variables that there is some subsequence that converges in
distribution (so in turn in all of the other forms). This is a statement that’s
analogous to compactness.

Theorem 20.8 (Helly’s Selection Theorem). For every sequence of distribution
functions Fn, there exists a subsequence Fnk and a bounded, right-continuous,
non-decreasing function F such that

Fnk(x) → F (x) at all continuity points x of F.

Why do we not say that F is a distribution function? It may not be the
case that the limits at ±∞ are correct. That is, F (x) /→ 0 as x → −∞ and
F (x) /→ 1 as x →∞. Here is an example:
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Xn = n with probability 1. The point-wise limit of the Fn’s is zero, and 0 is
not a distribution function of any random variable. Of course, the same happens
for any subsequence: Fnk → 0 for ∀nk. In particular, Xn does not convergence
in distribution (to anything). The only possible candidate was zero. Of course,
we could have already seen this because there’s just a big mass at n.

We’ll prove the theorem first, and then we’ll try to get rid of this obstacle.
We can give a condition that will ensure it converges to a distribution function.
What follows is [Durrett 2.4, Billingsley 2.5, Gut]. This is a proof of Helly.
It is elementary in that it does not rely on any other theorems, but it is very
non-trivial.

Proof of Theorem 20.8. We want a statement about compactness. For every
fixed x, 0 ≤ Fn(x) ≤ 1. By Bolsano-Weierstrass, there is a subsequence nk for
which Fnk(x) converges. We can repeat this for countably-many x. This is a
Cantor’s diagonal argument.

By Cantor’s Diagonal Method, we can find a subsequence Fnk such that

Fnk(q) converges for every q ∈ Q.

We call this limit F∞. That is,

Fnk(q) → F∞(q),∀q ∈ Q.

This makes sense: we did what we could. Do what’s true for an x, and
repeat for as many as possible. The problem is that we do not know to fill the
gaps. It’s not right-continuous. It’s not non-decreasing.

So, what we do is this: Now define

F (x) := inf{F∞(q) : q ∈ Q, q > x}.

This function F “truncates” away the bumps in the middle of the function that
made it non-decreasing. I did many things at once. First, I defined F on all of
R. Second, I removed the not non-decreasing property. This is obvious. Third,
F is right-continuous. We can check this:

lim
xn↘x

F (xn) = inf
y>x

F (y),

since F is non-decreasing. Then this is just

= inf{F∞(q) : q > x} = F (x).

The only thing to patch up is the convergence. By the definition of F , there
exists a rational q > x such that

F∞(q) < F (x) + ε. (29)

(Think of this q as a “witness” to the infimum.)
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Then, by the definition of F∞(q),

Fnk(q) → F∞(q).

Since q > x, Fnk(x) ≤ Fnk(q). This along with (29) imply

Fnk(x) ≤ F (x) + ε

for sufficiently large k.
Now we need a lower bound for Fnk(x). Now we want to do things to the

left, and we do not have a control on what is happening (no witnesses). We
know only one thing that can help us to the left, and that’s right-continuity.
This says that if we take an x and jump a little to the left, the value can not
dramatically drop.

Let x be a point of continuity of F . That is, by the left continuity of F ,
there exists r < x such that

F (r) > F (x)− ε.

Choose r′ ∈ Q such that r < r′ < x. We argue as before,

Fnk(r) → F∞(r′).

Now, we want to compare this to x. F∞(r′) ≥ F (r) ≥ F (x) − ε since F (r) is
the infimum of all the values (definition of F ). Also, Fnk(x) ≥ Fnk(r′) because
Fnk is non-decreasing. Thus, we have proved the lower bound

Fnk(x) ≥ F (r)− ε for sufficiently large k.

By combining our inequalities,

F (x)− ε ≤ Fnk(x) ≤ F (x) + ε.

Then lim supFnk(x) ≤ F (x) + ε and lim inf Fnk ≥ F (x) − ε. Since ε > 0 is
arbitrary, we can tighten this. So, we conclude

limFnk(x) = F (x).

I’ll ask one quick question here. How do we know that this statement is not
just empty? How do we know that there even exists a good F? There are only
countably many discontinuities (proved as before).

JANUARY 25, 2008
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21 Characteristic Functions

We started the big chapter on characteristic functions, which is a new way of
studying random variables using Fourier analysis. The characteristic function
of a random variable X is a function ϕ : R → C

ϕX(t) = ϕ(t) = EeiXt, t ∈ R.

How is this connected to Fourier analysis? If X has density f , then

ϕ(t) =
∫ ∞

−∞
eixtf(x) dx = f̂(t). (30)

So for these functions, the characteristic function is the Fourier transform of
the density function. Even when X doesn’t have a density, we can heuristically
think of this like a Fourier transform. We replace f(x) dx by dP(x).

Why do we need this? Why is this approach to characteristic functions
important? It’s because of the following fundamental properties:

1. There is a one-to-one correspondence between distributions of random
variables and characteristic functions of random variables72. So, no infor-
mation is lost studying a distribution this way.

2. If X and Y are independent, then ϕX+Y (t) = ϕX(t)ϕY (t). This is nice73

The convolution goes into product in Fourier transforms. This property
is true even when the density isn’t defined.

3. Pointwise convergence of characteristic functions implies convergence in
distribution of random variables. The converse is almost true74.

These will be our strategies for central limit theorems.

21.1 Properties

Let’s start with simple properties first:

Property 1 (Boundedness). ϕ(0) = 1 and |ϕ(t)| ≤ 1 for all t.

Proof. ϕ(0) = EeiX0 = E1 = 1. And |ϕ(t)| = |EeiXt| ≤ E|eiXt| = 1.

Boundedness is important when you try to use Dominated Convergence.

Property 2. ϕ(−t) = ϕ(t), where if x = a + ib, x = a− ib.

Proof. Recall Euler’s Formula: eiθ = cos θ+i sin θ. ϕ(−t) = Ee−iXt = E cos(Xt)−
Ei sin(Xt) = E(cos(Xt) + i sin(Xt)) = EeiXt = ϕ(t).

72Not between the random variables and the characteristic functions. Why? The integral
depends only on the distribution

73If you try to study X and Y through their densities, you get convolution, which is not an
easy operation at all.

74This is important in central limit theorems. Note the conclusion.
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Corollary 21.1. ϕ−X(t) = ϕX(t). In particular, if X is symmetric, then ϕ(t)
is real75.

Property 3. If X, Y are independent random variables, then

ϕX+Y (t) = ϕX(t)ϕY (t).

Proof.

Eei(X+Y )t = E(eiXteiY t)

= EeiXt · EeiY t,

by independence.

Let’s do some examples.

1. The first non-trivial random variable is Bernoulli. I want to make a sym-
metric Bernoulli. P(X = 1) = P(X = −1) = 1

2 . The expectation is

ϕ(t) =
1
2
eit +

1
2
e−it = cos t.

2. Normal distribution N(0, 1). It has density f(x) = 1√
2π

e−x2/2. We use
(30).

ϕ(t) = f̂(t) =
1√
2π

∫ ∞

−∞
eixte−x2/2 dx.

Now, we now how to integrate f , so we want to make something that looks
like it by completing the square.

x2

2
− ixt =

1
2
(x− it)2 +

t2

2
.

So

ϕ(t) =
1√
2π

∫ ∞

−∞
e−

1
2 (x−it)2e−t2/2 dx

= e−t2/2 · 1√
2π

∫ ∞

−∞
e−

1
2 (x−it)2 dx

= e−t2/2 · 1√
2π

∫ ∞

−∞
e−

1
2 y2

dy

= e−t2/2

Justify y = x + it by a symmetry or Cauchy integral argument.
75Actually, the converse is true as well.
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3. Uniform distribution on [a, b]. Has density f(x) = 1
b−a · 1[a,b].

ϕ(t) =
∫ b

a

eixt

b− a
dx =

1
it(b− a)

∫ ibt

iat
ey dy =

eibt − eiat

it(b− a)
.

In the case a = −1 and b = 1, we get

ϕ(t) =
eit − e−it

2it
=

sin t

t
.

This is sometimes called the “sinc(t)” function.

I will try to give you a feeling next of the Fourier analysis. This won’t be
needed if you’re not familiar, but it’s helpful.

22 Heuristics using Fourier Analysis

One of the main principles of the Fourier transform is Parseval’s identity. Con-
sider the Hilbert space L2(R) of functions with the inner product

〈f, g〉
∫

fg.

Then, the L2 norm will be ‖f‖2L2 =
∫
|f |2. Parseval’s identity says that the

Fourier tranform is a unitary map. Due to the normalization of probability, we
have a corrective constant: U : f 4→ 1√

2π
f̂ is unitary. So ‖f‖L2 = ‖Uf‖L2 .

Thus, ∫
|f |2 =

1
2π

∫
|f̂ |2

We will use U∗U = Id. U−1 = U∗.

(U∗g)(x) =
1√
2π

∫ ∞

−∞
e−itxg(t) dt.

Therefore
f(x) =

1√
2π

∫ ∞

−∞
e−itxf̂(t) dt

So if you know the Fourier transform of a function, then you will know the
function itself. This is called the Fourier Inversion Formula. This is because
unitaries (rotations) are easy to invert. This is essentially the reason why we
have property 1.

JANUARY 28, 2008

Suppose µ is a probability measure. Let ϕ(t) =
∫

eitxµ(dx) be the corre-
sponding characteristic function. The characteristic function uniquely deter-
mines the measure µ.

The inversion formula says
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Theorem 22.1 (Inversion Formula). If a < b, then

lim
T→∞

1
2π

∫ T

−T

e−ita − e−itb

it
ϕ(t) dt = µ(a, b) +

1
2
µ({a, b}).

Before proving the inversion formula, a couple of remarks:

Remark 22.2. a) The integrand is

e−ita − e−itb

it
ϕ(t).

This is just the integral
(∫ b

a
e−itx dx

)
ϕ(t)

so ∣∣∣∣
e−ita − e−itb

it
ϕ(t)

∣∣∣∣ ≤
∫ b

a
|e−itx| dx|ϕ(t)| ≤ |b− a|.

b) If µ = δ0 is a point mass at 0, then ϕ(t) ≡ 1. In this case, if b = 1 and
a = −1, the integrand is

2 sin t

t
,

and this is not integrable. The integral does not converge absolutely.

So let’s prove the inversion formula:

Proof. Let

IT =
∫ T

−T

e−ita − e−itb

it
ϕ(t) dt

which, when plugging in is
∫ T

−T

∫
e−ita − e−itb

it
eitxµ(dx) dt.

Since the integrand is bounded, µ is a probability measure, and [−T, T ] is a
finite interval, and cos(−u) = cos u and sin(−u) = − sinu, we have

IT =
∫ ∫ T

−T

e−ita − e−itb

it
eitx dt µ(dx)

=
∫ [∫ T

−T

sin t(x− a)
t

dt−
∫ T

−T

sin t(x− b)
t

dt

]
µ(dx).

There’s a cosine part that goes away, because cos(−x) = cos x.
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Let’s introduce a function

R(θ, T ) =
∫ T

−T

sin θt

t
dt.

Then
IT =

∫
(R(x− a, T )−R(x− b, T )) µ(dx) (31)

Let S(T ) =
∫ T
0

sin x
x dx

Then for θ > 0 changing variables t = x
θ gives

R(θ, T ) = 2
∫ Tθ

0

sinx

x
dx = 2S(Tθ).

If θ < 0,
R(θ, T ) = −R(|θ|, T ) = −2S(Tθ).

Thus, for any θ ∈ R, one has the formula

R(θ, T ) = 2 sgn(θ)S(T |θ|).

As T →∞, S(T ) → π
2 . (see Durrett, Appendix exercise 6.6.) So R(θ, T ) →

π sgn(θ), and

R(x− a, T )−R(x− b, T ) →






2π a < x < b
π x = a or x = b
0 x < a or x > b

and |R(θ, T )| ≤ 2 supy S(y) < ∞. Using the Bounded Convergence Theorem
with (31), we get

1
2π

IT → µ(a, b) +
1
2
µ({a, b}),

which is the inversion formula.

Let’s do a little practice with characteristic functions. This is Durrett, exer-
cise 3.4. If X1 ∼ N(0, σ2

1) and X2 ∼ N(0, σ2
2) and X1 and X2 are independent,

then X1 + X2 ∼ N(0, σ2
1 + σ2

2).

Proof. X1
d.= σ1Z and X2

d.= σ2Z where Z ∼ N(0, 1). Let me remind you

ϕZ(t) = e−t2/2.

Then we have the general formula that

ϕa+bX(t) = E(e(a+bX)ti)

= eatiϕX(bt)
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So

ϕX1+X2(t) = ϕX1(t)ϕX2(t)

= e−
1
2 (σ1t)2 · e− 1

2 (σ2t)2

= e−
1
1 2(σ2

1+σ2
2)t2

= characteristic function for N(0, σ2
1 + σ2

2).

By the inversion formula, we’re done.

Another fact is that ϕ is integrable only if the underlying measure is nice:

Theorem 22.3. If
∫
|ϕ(t)| dt < ∞, then µ has bounded continuous density

given by

f(y) =
1
2π

∫
e−ityϕ(t) dt.

Proof of this is deferred. Let’s look at an example of how to use this. Recall
Durrett, example 3.5. “triangular distribution.” The graph of the density is

f(x) = 1− |x|, x ∈ (−1, 1)

The characteristic function is 2(1 − cos t)/t2. The (second) inversion formula
from Theorem 22.3 gives

(1− |y|)+ =
1
2π

∫ ∞

−∞
e−isy 2(1− cos s)

s2
ds.

This gives us a clever way of figuring out the density function. It actually turns
out that 1−cos t

πt2 is the density of a random variable. So, we can actually use this
formula to figure out its characteristic function as (1− |y|)+.

JANUARY 30, 2008

22.1 Inversion Formula

We are going through the inversion formula, which tell you characteristic func-
tions determine the distribution. We’ll state it in a little bit easier way than
was stated last time. The inversion formula involves an integral, but it involves
a limit of integrals centered at zero.

The principal value of the integral is

p. v.

∫ ∞

−∞
= lim

T→∞

∫ T

−T
.

Theorem 22.4 (Inversion Formula). Let X be a random variable with charac-
teristic function ϕ. If P(X = a) = P(X = b) = 0, then

P(a < X ≤ b) =
1
2π

p. v.

∫ ∞

−∞

e−ita − e−itb

it
ϕ(t) dt.
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The formula itself may not look too pretty with the difference of exponentials,
but one thing to remember is the representation: This kernel is

e−ita − e−itb

it
=

∫ b

a
e−itx dx,

which may sound even more complicated, but let’s leave the following as an
exercise: Try to interpret this using Fourier Analysis. We are taking an inverse
Fourier transform (with the minus sign on the exponent).

One important corollary that explain the meaning of the inversion formula
is:

Corollary 22.5. The characteristic function determines the distribution of X
uniquely.

So there is a one-to-one correspondence between distributions and charac-
teristic functions. Why is this true? We want to know the probabilities of X on
intervals. The values on P(a < X ≤ b) will determine the distribution functions.
The only problem is the condition P(X = a) = P(X = b) = 0.

Proof. First, we note that

P(a < X ≤ b) = F (b)− F (a).

The condition means that F is continuous at a and at b (there is no jump). So,
the inversion formula determines F (b)− F (a) for all points of continuity a, b of
F . We can send a to −∞. By sending a → −∞, this determines F (b) for all
points b of continuity of F . By the right continuity of F , we can recover the
values at the discontinuity points.

So, we can study random variables through their characteristic functions,
and this will be our approach to the Central Limit Theorem.

Now, we’re going to simplify the Inversion Formula a little bit. We usually
apply it when X has density.

Theorem 22.6 (Inversion Forumla for densities). Let X be a random variable
with characteristic function ϕ, and assume

∫ ∞

−∞
|ϕ(t)| dt < ∞.

This alone means that X has continuous density, and we can recover the density.
Specifically,

f(y) =
1
2π

∫ ∞

−∞
e−ityϕ(t) dt.

Remark 22.7. Recall that ϕ(t) =
∫∞
−∞ eitxf(x) dx = f̂(t). If we recall the

geometry of the Fourier transform, if we recall the linear operator U : f 4→ 1√
2π

f̂
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is a unitary operator in L2. In other words, U is like a rotation. To invert, we
rotate back. Then

U−1 = U∗,

and U∗ϕ can be easily computed: U∗ϕ = 1√
2π

ϕ̂. So

(U∗ϕ)(y) =
1
2π

∫ ∞

−∞
e−ityϕ(t) dt.

This is a remark based on Fourier Analysis as to why this formula is true, but
we’ll actually prove it.

Proof. First, we’ll try to understand why the density is continuous.

1. Every function f of this form is continuous. Indeed, let yn → y. Then,
e−itynϕ(t) → e−ityϕ(t). So, the integrands will converge for every t. And
they are bounded by something integrable (by hypothesis). Specifically,
|e−itynϕ(t)| = |ϕ(t)|, which is an integrable function. By the Dominated
Convergence Theorem, the integrals converge: f(yn) → f(y).

2. We want to show that X has density. To start, we’ll show that X has
no point masses. That is, P(X = x) = 0 for all x. This is of course a
necessary condition (though not sufficient76).
It suffices to prove, for any two points a and b such that P(X = a) =
P(X = b) = 0, and a < x < b, that P(a < X ≤ b) ≤ C(a, b) → 0 as a → x,
b → x.
We use Inversion Formula and the inequality

∣∣∣∣
e−ita − e−itb

it

∣∣∣∣ =

∣∣∣∣∣

∫ b

a
e−ita dt

∣∣∣∣∣ ≤
∫ b

a
1 dt ≤ |b− a|.

This gives

P(a < X ≤ b) ≤ 1
2π

p. v.

∫ ∞

−∞
|b− a||ϕ(t)| dt ≤ |b− a|

∫ ∞

−∞
|ϕ(t)| dt.

3. Formula for the density: Let a < b be arbitrary. Thus (since X has no
point masses),

P(a < B ≤ b) =
1
2π

∫ ∞

−∞

e−ita − e−itb

it
ϕ(t) dt

=
1
2π

∫ ∞

−∞

(∫ b

a
e−ity dy

)
ϕ(t) dt

=
∫ b

a

(
1
2π

∫ ∞

−∞
e−ityϕ(t) dt

)
dy

76If F is continuous but not differentiable (like the Cantor distribution), this has no point
masses, but no density function.
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and so we’re done as f(y), which is in parentheses, is the density of X.
(Note the application of Fubini’s theorem above.)

4. How do we use the principal value? Justify going from p.v. to the true
integral

∫∞
−∞.

fT (y) := 1
2π

∫ T
−T e−ityϕ(t) dt. We know that fT (y) → f(y) as T →∞ for

all y, by the Dominated Convergence Theorem.

Moreover, |fT (y)| ≤ 1
2π

∫ T
−T |e

−ityϕ(t)| dt ≤ 1
2π

∫∞
−∞ |ϕ(t)| dt < ∞. By the

Dominated Convergence Theorem,

lim
T

∫ b

a
fT (y) dy →

∫ b

a
f(y) dy.

The intuitive idea is to recognize the kernel as an integral itself. This is
Fourier inversion formula for densities. If the Fourier transform is in L1 and
bounded, then the Fourier inversion formula holds. It’s a nice general result in
analysis.

FEBRUARY 1, 2008

22.2 Continuity Theorem

Here we go with one of the main results of characteristic function theory.

Theorem 22.8 (Continuity Theorem). Let Xn, X be random variables with
characteristic function ϕn, ϕ. Then Xn → X in distribution if and only if
ϕn(t) → ϕ(t) for every t.

This is a full equivalence, but you must ensure that ϕ is the characteristic
function of a random variable. The reverse direction is the important direction.

Proof of necessity. Let Xn → X in distribution. Then Ef(Xn) → Ef(X) for
any continuous and bounded function f . Hence EeitXn → EeitX because the
function eitx is bounded. It is not real-valued, but you can split it into real and
imaginary parts.

Here is another property of characteristic functions:
Property 4. Characteristic functions are continuous.

Proof. We want to show that if tn → t, then EeitnX → EeitX . This is true by the
Dominated Convergence Theorem, because |eitnX | ≤ 1 and eitnX(ω) → eitX(ω)

for every ω ∈ Ω.
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As an exercise, show that characteristic functions are uniformly continuous
(on R).

We will want to show sufficiency for Theorem 22.8. I do not know any trivial
argument. We will first show the tightness of the sequence. For the proof of
sufficiency, we will first show that: ϕn(t) → ϕ(t) for all t implies that (Xn) is
tight. Recall, tightness is: ∀ε > 0,∃M : P(|Xn| ≥ M) ≤ ε for all n. That is,
mass can not escape.

We would want to use the inversion formula, but this will not work. We
have point-wise convergence, and we can not use something like dominated
convergence.

Now and in the sequel, the main theme is to read as much as possible from
the characteristic function. How can we read tightness information from the
characteristic function? Most of the information we want to know is contained
in the interval around zero in the characteristic function.

Recall the characteristic function takes value 1 at 0.
Here is the idea:

Lemma 22.9. For every77 u > 0,

1
2u

∫ u

−u
(1− ϕ(t)) dt ≥ 1

2
P

(
|X| ≥ 2

u

)
.

Proof. By the definition of the characteristic function,

1
2u

∫ u

−u
(1− EeitX) dt = E

[
1
2u

∫ u

−u
(1− eitX) dt

]
= E

(
1− sin(uX)

uX

)
.

The sinc function will be eventually below 1
2 . Thus, the quantity above is

≥ E(1− 1
2
)1{|uX|≥2} =

1
2

P(|uX| ≥ 2),

which was what we needed to prove.

The left hand side is actually real by the proof.

Proof of tightness. Our limiting characteristic function ϕ is one specific func-
tion. We choose u so that the left hand side is a small constant. We apply the
lemma to the limiting random variable. The ϕn converge to ϕ pointwise, so we
can apply a limiting argument.

Since ϕ(0) = 1 and ϕ is continuous at 0, given an ε > 0, we can choose u > 0
such that

1
2u

∫ u

−u
(1− ϕ(t)) dt < ε.

Since ϕn(t) → ϕ(t) pointwise, by the Dominated Convergence Theorem, ∃n0

such that
1
2u

∫ u

−u
(1− ϕn(t)) dt < 2ε for all n ≥ n0.

77u will be very small, and we’ll study intervals (−u, u).
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By the Lemma,

P(|Xn| ≥
2
u

) ≤ 4ε) for all n ≥ n0.

We have proved that (Xn)n≥n0 is tight78. Therefore, (Xn)n≥1 is tight.

Proof of sufficiency in Theorem 22.8. We have already proved that the point-
wise convergence of the ϕn → ϕ implies tightness of (Xn). Then Helly’s theorem
tells us that convergence is distribution holds on a subsequence.

For every subsequence of Xn, we can find a further subsequence that con-
verges. We do not know that the analogy (of topology) from R applies perfectly,
and we do not know that every subsequential limit is the same.

By Helly’s Selection Theorem, there is a subsequence

Xnk → X ′ in distribution, for some random variable X ′.

We claim that X = X ′. Indeed, by the necessity part of the theorem, ϕnk(t) →
ϕX′(t) for every t. But by the assumption, ϕnk(t) → ϕX(t) = ϕ(t). Hence
ϕX′(t) = ϕX(t) ∀t. By the Inversion Formula, X has the same distribution as
X ′.

We now know that every subsequence of Xn has a further subsequence that
converges to X in distribution. We claim that Xn → X in distribution. (We
know that this holds for the reals: if it didn’t hold, we’d have a subsequence that
does not converge, and the property above would not hold for this subsequence.)

Let f be a bounded continuous function. Then every subsequence of an =
Ef(Xn) has a further subsequence that converges to a = Ef(X). Then an → a.
This is an exercise in real numbers.

Therefore Xn → X in distribution.

This is a pretty ingenious proof. First, we used some local property of
characteristic function, then Helly’s theorem, and from a subsequential limit
and empty hands, we get a full convergence statement. An alternative proof
(which is more traditional) is in the textbook of Khoshevisan. It’s a proof using
the full proof of Fourier analysis and without using the topological tricks.

An exercise: If we do not know if ϕ is a characteristic function, then there
is still a theorem: Suppose ϕn(t) → g(t) and g is continuous at 0. Then g is a
characteristic function of some random variable X and

Xn → X in distribution.

In the proof, we only used continuity of ϕ(t) and ϕ(0) = 1, but this second fact
can be built from convergence.

FEBRUARY 4, 2008

It is possible that class will be cancelled on Friday.
78We can take care of the first n0 by simply throwing them in and increasing M .
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We are trying to study random variables through their characteristic func-
tions. Characterisitic functions are expectations of exponentials. One way to
study functions is through Taylor series. We can use the linearity of expectation.

22.3 Taylor expansions of Characteristic Functions

Suppose ϕ(t) = EeitX . Recall

ex =
∞∑

k=0

xk

k!
.

Then

ϕ(t) =
∞∑

k=0

E (itX)k

k!
=

∞∑

k=0

(it)k

k!
E(Xk).

In the right hand side, all the information about X that is needed is contained in
its moments. If you know the moments of X, then you know the characteristic
function. Intuitively, the moments of X should determine its distribution (if
the series converge, etc.). By viewing this is a formal series, we can get the
moments back from its Taylor expansion:

ϕ(k)(0) = ikE(Xk). (32)

So, the derivatives of the characteristic function at 0 give moments of a random
variable. That looks very powerful, actually. The left hand side is simply local
information about the characteristic function. Then you get all of the moments,
and from all of the moments, you can plug back in and get the characteristic
function at all t. You may have to worry about convergence. All of this was
based on formal series. We have been careless about converges.

We will concern ourselves with the first two terms of the Taylor expansion.
Usually, this is already a fairly good approximation of the exponential.

Lemma 22.10. ∣∣∣∣∣e
ix −

n∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤
2|x|n

n!
.

When we truncate the power series, the biggest contribution is given by the
last term.

The next lemma usually gives a much better approximation.

Lemma 22.11. ∣∣∣∣∣e
ix −

n∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤
|x|n+1

(n + 1)!

for all x ∈ R.

This will not be true without the i in eix on the left hand side. The proof is
not intuitive.
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Proof. We’ll integrate something like a Gamma function:
∫ x

0
(x− s)neis ds

If you integrate this, we will hopefully see the term in the sum in the statement
of the lemma. We integrate by parts79: We will raise the exponent n to n + 1.
So u = eis and dv = (x− s)n ds. Then v = − (x−s)n+1

n+1 . The integral becomes

uv|x0 −
∫ x

0
v du = − (x− s)n+1

n + 1
eis|x0 + i

∫ x

0

(x− s)n+1

n + 1
eis ds

=
xn+1

n + 1
+

i

n + 1

∫ x

0
(x− s)n+1eis ds

When n = 0 (and then we’ll use this formula inductively), we have
∫ x

0
(x− s)0eis ds =

∫ x

0
eis ds =

1
i
eis|x0 =

eix − 1
i

by direct computation. By substituting into the previous formula,

eix − 1
i

= x + i

∫ x

0
(x− s)eis ds.

By rearranging terms,

eix = 1 + ix + i2
∫ x

0
(x− s)eis ds.

We just recycle this formula again. When n = 1,
∫ x

0
(x− s)eis ds =

x2

2
+

i

2

∫ x

0
(x− s)2eis ds.

When we plug this in for what we have for one-term integration, we get

eix = 1 + ix +
i2x2

2
+

i3

2

∫ x

0
(x− s)2eis ds.

Here we get a three-term Taylor series. In the term with the integral, we see
the error.

Inductively using this formula, we get

eix =
n∑

k=0

(ix)k

k!
+

in+1

n!

∫ x

0
(x− s)n eis ds.

Now, we estimate the error term in+1

n

∫ x
0 (x− s)n eis ds.

|Error| = 1
n!

∣∣∣∣
∫ x

0
(x− s)neis ds

∣∣∣∣ ≤
1
n!

∫ x

0
(x− s)n ds =

1
n!

· xn+1

n + 1
=

xn+1

n + 1
.

79Here, x is a constant and s is a variable.
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When you apply these two lemmas for the characteristic function, then you
get:

Corollary 22.12.
∣∣∣∣∣ϕ(t)−

n∑

k=0

(it)k

k!
E(Xk)

∣∣∣∣∣ ≤ E min
{

tn+1

(n + 1)!
|X|n+1,

2tn

n!
|X|n

}

Note, by having the expectation on the right hand side on the outside of the
minimum, the right hand side always exists.

This may sound too complicated, so let’s do first term and second term
approximation. So, for n = 1, we have this corollary:

Corollary 22.13 (Linearization). If E|X| < ∞, then

ϕ(t) = 1 + itEX + o(t).

Proof. Use the Taylor expansion, recognizing 1 and itEX as the first two terms
in the Taylor expansion.

|ϕ(t)− 1− itEX| ≤ E min
(

t2

2
|X|2, 2t|X|

)

= t · E min
(

t

2
|X|2, 2|X|

)

= t · Ef(t, X),

where f(t,X) = min
(

t
2 |X|2, 2|X|

)
. Then f(t, X) ≤ 2|X|. On the other hand,

f(t,X) → 0 as t → 0.
By the Dominated Convergence Theorem, Ef(t,X) → 0 as t → 0.

Corollary 22.14. If E|X| < ∞, then ϕ′(0) = iEX.

For n = 2, we get

Corollary 22.15 (Second order approximation). If E|X|2 < ∞, then

ϕ(t) = 1 + itEX − t2

2
E(X2) + o(t2).

This is very useful. We will use this corollary in the proof of the Central
Limit Theorem.

Similarly, one can read off the the second derivative information here. The
proof of this is the same as the previous. If we keep going, then we have

Corollary 22.16. If E|X|n < ∞, then ϕ(n)(0) = inE(Xn).

So ϕ(n)(0)
in is always real.

Heuristically, if you know the moments, you know the derivatives at 0, and
then you know all of ϕ. The truth is not quite this. You can ask a general
question. If you only know the moments, then do you know the distribution of
X? Sometimes “yes” and sometimes “no”. This problem is usually called the
moment problem.
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Question 22.17 (Moment Problem). Do the moments of X determine the
distribution of X?

In general, no. If you do not care how moments grow, then your Taylor series
will diverge. If you have moments with bounded growth, then the answer is yes.
If the moments grow moderately, then yes. It is clear why the growths of the
moments should be necessary here (since you have Taylor series). If the moments
grow like ek, then you’re okay. If the moments grow super-exponentially, then
you have a problem.

Theorem 22.18. If µk = (EXk)1/k = O(k) for k ∈ 2Z, k → ∞, then there
exist only one distribution of X with these moments.

This is one solution to the moment problem. If the moments grow like kk,
then we are okay.

FEBRUARY 6, 2008

In a couple of hours, I’ll post the first midterm. You will be able to use any
material we’ve covered so far. Please do not use any theorems you’ve learned in
other courses. Feel free to use any of the complex analysis you’ve learned. You
can use any standard tables, or maybe computerized tables.

On Friday there will be no class (no office hours as well).

22.4 Central Limit Theorem for i.i.d. r.v.’s

So, this is where all our work in characteristic functions were for. Here’s our
result.

Theorem 22.19 (Lindeberg-Lévy). Let (Xn) be a sequence of independent and
identically distributed random variables with mean µ and variance σ2. Then
Sn = X1 + · · ·+ Xn satisfies the “Central Limit Theorem”:

Sn − µn

σ
√

n
→ N in distribution as n →∞,

where N is a standard normal random variable.

Of course the means and standard deviations on both sides must agree, which
is why we standardized on the left. This is probably the simplest form of the
Central Limit Theorem, established in the 20’s. We definitely need variance,
since N has variance.

The conclusion, equivalently, is: for a ≤ b,

P
(

a <
Sn − µn

σ
√

n
≤ b

)
→ P(a < N ≤ b) =

1√
2π

∫ b

a
e−x2/2 dx.

If you’re interested in approximating a random variable over some interval, this
gives an approximation.
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Note, the De Moivre-Laplace CLT is a partial case (for Bernoulli Xn).
The proof, given what we know about characteristic functions, is easy. We’ll

take the characteristic function of N and the characteristic function of the left
hand side. We’ll check that the product converges.

Proof. First, we’ll simplify our life. Without loss of generality, we can assume
that µ = 0 and σ = 1. For this, it’s usual: we normalize the variables beforehand
(and not when we’re ready to apply the theorem). So, consider X ′

n = Xn−µ
σ .

We want to show that Sn√
n
→ N in distribution. We take the characteristic

functions of the left hand side, and we have a sum of independent random
variables, so we get a product. As we know, if E(X2) < ∞ (i.e., X has a second
moment), then

ϕ(t) = 1 + itEX − t2

2
E(X2) + o(t2) as t → 0.

We need to know, however, a statement for all t. Actually, the
√

n will help us.
Namely, if we use this for Xn, then

ϕXk(t) = 1− t2

2
+ o(t2) as t → 0,

since EX = 0. We only know this for t going to zero, but we need to know it
for all t values.

What we are truly interested in is

ϕXk/
√

n(t) = ϕXk(t/
√

n).

This is great, because we are evaluating ϕXk at only very small values of input
(as n grows). So this will be

= 1− t2

2n
+ o

(
1
n

)

as n →∞ for any fixed t. The little o should say o(t2/n), but we’ve fixed t.
Thus, the characteristic function is a little parabola. We know this local

behavior. Then, by independence,

ϕSn/
√

n(t) =
n∏

k=1

ϕXk/
√

n(t) =
(

1− t2

2n
+ o

(
1
n

))n

.

If there were no error term here (we need to justify this), then this would go to

∼
(

1− t2

2n

)n

→ e−t2/2 = ϕN (t) as n →∞.

Therefore, Sn√
n
→ N in distribution, by the Continuity Theorem.
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This is very interesting, because it’s a local proof. We used the asymptotic
as t → 0, and since we were dividing by

√
n, we only used local (to 0) values of

ϕ.
We need to justify ∼. If you believe that complex analysis is the same as

real analysis, then you’d take logarithm of both sides. We use

log(1 + z) = z + o(1) as z → 0.

We’ll leave that method/option as an exercise. We will not do it this way.
We really need complex analysis (it’s legitimate proof), since the error term is
complex-valued.

A second way to justify this is with a lemma, which we will need later. The
problem was that we had a product of n terms. If we had a sum, then we’d
have already been done.

Lemma 22.20. Let z1, . . . , zn ∈ C and w1, . . . , wn ∈ C be of modulus at most
1. Then

|z1 · · · zn − w1 · · ·wn| ≤
n∑

k=1

|zk − wk|.

In the above work, we clearly have the correction terms being of modulus at
most 1.

Proof. Because there is no constant in front, the most plausible thing to do is
induction on n.

z1 · · · zn − w1 · · ·wn = z1 · · · zn − w1z2 · · · zn + w1z2 · · · zn − w1 · · ·wn

= (z1 − w1)z2 · · · zn + w1(z2 · · · zn − w2 · · ·wn)

By applying absolute value everywhere, by the triangle inequality,

|z1 · · · zn − w1 · · ·wn| ≤ |z1 − w1|+ |z2 · · · zn − w2 · · ·wn|

and we are done by induction.

We use this lemma for zk = 1− t2

2n and wk = 1− t2

2n + o( 1
n ). This writing is

a little bit informal here, since there error terms in wk and different for different
k.

Hence, |
∏

zk −
∏

wk| ≤
∑n

k=1 o( 1
n ) = o(1) as n →∞.

Thus, ∼ in the proof of the theorem means
(

1− t2

2n
+ o

(
1
n

))n

=
(

1− t2

2n

)n

+ o(1).

To use the Binomial Theorem, there are probably too many terms. There
are exponentially many terms, but this was a good suggestion.

A couple of remarks:

135



1. Finite variance is needed.80 A properly normalized sum of Cauchy random
variables is a Cauchy random variable (just done as a HW exercise). So,
the CLT does not hold for Cauchy random variables. The reason is that
Cauchy random variables have heavy tails.
For every 1 < p < 2, there exists random variables (Xn) independent and
identically distributed, with finite pth moments, but with infinite 2nd mo-
ment, for which CLT fails. In other words, you need the second moment.
These are called stable random variables or stable laws. Intuitively, they
are like Gaussians, except the exponent 2 is replaced by p: exp/2.

2. CLT holds for Poisson random variables. In fact, Poisson random variables
have all moments.
Here is a warning. It looks like it should not be true, since a Poisson
random variable can be estimated by a sum of Bernoulli random variables.
If you add Bernoulli’s with mean 1

n , you get a Poisson: If Xk are Bernoulli
with mean λ/n, their sum Sn = X1 + · · · + Xn has mean λ. Then Sn →
Poisson(λ). In particular, the CLT fails. The CLT fails because the mean
µ = λ/n is not a constant.81

3. Finally, if you recall the Laws of Large Numbers (both Weak and Strong)82,
then they hold even if one only has pair-wise independence. Recall this is
because ES2

n = E(X1 + · · ·+ Xn)2 only keep pairwise terms, which are all
zero.
The Laws of Large Numbers hold for pairwise independent random vari-
ables. In this scenario, the CLT does not hold. We consider an example:

Example 22.21. Consider independent random variables (ξn) with

P(ξk = −1) = P(ξk = 1) =
1
2
.

Of course, these satisfy CLT, but from these, we will cook up an example
that does not. Consider

ξ1(1 + ξ2)(1 + ξ3) · · · · · (1 + ξn+1) = S2n .

Why did we name it S2n? When we expand, it is the sum of 2n terms
of the form of different products of ξk’s. All of these terms are pairwise
independent (exercise: for any two terms, there are shared factors and not
shared factors. We condition on the shared factors.).
However, S2n is far from normal. Most of the time, it takes the value
zero. Specifically

S2n =






0, prob.1− 2−n

2n, prob.2−n−1

−2n, prob.2−n−1

80The variance is needed for any sort of Central Limit Theorem to hold at all.
81You could also say that CLT fails because they are not identically distributed, but we will

see a form of CLT there too. So the main reason is that the mean is not constant.
82Say, only to discuss the Weak Law.
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So, it’s a three-valued random variable, which is far from normal.

So, in the theorem, everything is needed: mean, variance, and independence.

FEBRUARY 11, 2008

In problem six, Sνn = X1 + · · · + Xνn . In problem four, change [−1, 1] to
[0, 1].

Today we will do the central limit theorem for non-identical distributed
random variables. In some cases, this is the most general central limit theorem
that you will ever need to use.

The set up is that you have (Xn) is a sequence of independent, but not
necessarily identically distributed random variables. One example where this
is needed: suppose you do have (Zn) is a sequence of independent identically
distributed random variables, but you look at them with weights

Sn =
n∑

k=1

akZk, where ak ∈ R.

Then the Xk = akZk are independent, but not identically distributed. Even
in this example, it is interesting to see what condition you need on the ak’s.
Obviously if they are all the same, then you have a central limit theorem. Again
obviously if they are all zero except one of them, then you don’t have a central
limit theorem.

For the central limit theorem, we obviously need some “uniformity” of Xns.
One condition that we have for uniformity is tightness. This bounds all the
range of Xns within some interval, except some outlyers. This will not work,
since tightness has nothing to do with expectations or moments or anything else.
But you saw from homework that this won’t work: little epsilons can escape very
quickly. So, instead of tightness, which is the condition of examining tails:

P(|Xn| > M) < ε for all n

we replace the P with E. So, we will look at expectations. We will look at
something like

E|Xn| · 1{|Xn|>M} =: E(|Xn| : |Xn| > M),

denoted as on the right hand side for convenience of notation.

Proposition 22.22. For any random variable X,

E(|X| : |X| > M) → 0 as M →∞.

Proof. The event {|X| > M} → ∅ as M → ∞. Thus, 1{|X|>M} → 0 pointwise
as M →∞.

Then |X| · 1{|X|>M} → 0 as M → ∞ and is bounded by |X|. By the
Dominated Convergence Theorem, E|X| · 1{|X|>M} → 0 as M →∞.
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So we know this one fact that for a single random variable. If this holds
uniformly for a sequence of random variables, then we will have a central limit
theorem.

This is the remarkable condition, called Lindeberg’s Condition.

Definition 22.23 (Lindeberg’s Condition). Consider independent random vari-
ables Xn with means 0 and variances σ2

n. Let

s2
n =

n∑

k=1

σ2
k =

n∑

k=1

E(X2
k).

We say that the sequence (Xn) satisfies Lindeberg’s condition if, ∀ε > 0,

n∑

k=1

E(X2
k : |Xk| > εsn) = o(s2

n) as n →∞.

We will prove the theorem, and then unwrap this rather technical definition.

Example 22.24. Suppose Xns are i.i.d. with variance σ2. This is the easiest
example for which to understand this. Then s2

n = σ2n. Then the Lindeberg’s
condition is verified:

n · E(X2
1 : |X1| > εσ

√
n) = o(n),

which is equivalent to saying that

E(X2
1 : |X1| > εσ

√
n) → 0 as n →∞.

So, this is true by Proposition 22.22.

Think of all variances as being common, and being 1. Then, the sum in the
definition is o(1). So, the average will (collectively) go to zero. We’ll work with
the condition next time.

Theorem 22.25 (Lindeberg-Feller’s Central Limit Theorem). Let Xn be ran-
dom variables satisfying Lindeberg’s condition. Then, the Central Limit Theo-
rem holds: The partial sums Sn = X1 + · · ·+ Xn satisfy

Sn

sn
→ N as n →∞ in distribution,

where N is the standard normal random variable.

The independence for the random variables is stated within the definition.
The Lindeberg condition is a necessary condition for the CLT to hold. Levy
proved that it is a necessary fact, so it is the weakest condition that must hold.
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Remark 22.26. We can change random variables Xk as we increase n. More
formally, we will look at random variables (Xnk), k = 1, . . . , n and n = 1, 2, . . ..
That is,

S1 = X11

S2 = X21 + X22

S3 = X31 + X32 + X33

We say that the (Xnk) form a triangular array.

Proof of Theorem 22.25 for Triangular Arrays. We can simplify by assuming
that sn = 1. Why can we do this? We do this by considering X ′

nk = Xnk/sn.
How does this affect Lindeberg’s condition?

The proof is similar to how we proved the CLT before. We will examine
characteristic functions and Taylor series. Use Corollary 22.12 for a random
variable X. Recall ϕ(t) = Eeitx. Then by Taylor’s expansion,

|ϕ(t)− (1 + itEX − t2

2
EX2)| ≤ E min(|tX|3, |tX|2).

In our case, for Xks,

|ϕk(t)− (1 + 0− 1
2
t2σ2

k)| ≤ E min(|tXk|3, |tXk|2). (33)

Now comes a crucial difference with the other proof. Why do we need two ways
of bounding? One must be good for different situations. We will use |tXk|3
when |Xk is small, and we will use |tXk|2 for large values of |Xk|.

So the right hand side in (33) is

≤ E(|tXk|3 : |Xk| < ε) + E(|tXk|2 : |Xk| > ε).

Now the problem is that we need to avoid integration, because we might not
have third moment. A very useful trick in analysis is: |tXk|3 = |tXk| · |tXk|2 ≤
ε|t|3X2

k . So the right hand side of (33) obeys

RHS ≤ ε|t|3σ2
k + t2E(X2

k : |Xk| > ε).

Now we take a sum on both sides.
∑

|ϕk(t)− (1− 1
2
t2σ2

k)| ≤ ε|t|3
∑

σ2
k + t2

∑
E(X2

k : |Xk| > ε)

≤ ε|t|3
∑

·1 + t2
∑

E(X2
k : |Xk| > ε).

By the Lindeberg condition,

lim sup
n

∑
|ϕk(t)− (1− 1

2
t2σ2

k)| ≤ ε|t|3.
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Since ε is arbitrary, the limit exists and is zero:

n∑

k=1

|ϕk(t)− (1− 1
2
t2σ2

k)| → 0 as n →∞

for every t.
Now, why is this important? Not only do we know an individual estimate,

but we have a collective bound, that the sum goes to zero. Why is the sum
important? Remember that the error in the product is bounded by the difference
of the sum of errors. In particular,

|
∏

ϕk −
∏

(1− 1
2
t2σ2

k)| → 0.

So we use this pivotal fact to bound errors in products. We see the light at the
end of the channel and have proved the CLT today!

This theorem is one of the most technical things we do.

FEBRUARY 13, 2008

We’re halfway through the proof of the Lindeberg Central Limit Theorem.
Recall the Lindeberg Condition: (Xn) independent random variables with

mean 0 and variances σ2
n, and define

s2
n =

n∑

k=1

σ2
k =

n∑

k=1

EX2
k .

The collection (Xn) satisfy Lindeberg’s Condition if

n∑

k=1

E(X2
k : |Xk| > εsn) = o(s2

n) as n →∞.

This condition always holds for n = 1 by the fact from last time. So, this is is
interesting for n → ∞. When chopping the random variables, do you have a
good effect overall, a uniform condition?

Then, the Central Limit Theorem stated that Xn satisfying the Lindeberg
Condition implies that Sn

sn
→ N(0, 1). We started to prove this.

1. We showed that even between

Sn = X1 + · · ·+ Xn

Sn+1 = X1 + · · ·+ Xn+1

we can permute the X1, . . . , Xn. So technically, Xk → Xnk. This was
the triangular array. So, we could, without loss of generality, assume that
sn = 1. At every step, we just normalize by the variance. That was the
first step.
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2. We tried to mimick the proof of the previous Central Limit Theorem. We
took characteristic functions and wrote out a two-term approximation for
them. Each characteristic function looked like

ϕk(t) ∼ 1 + 0 + i2t2X2/2 = 1− 1
2
t2σ2

k as t → 0.

Not only did we know this, but we knew that the sum of errors is fine:

n∑

k=1

|ϕk(t)− 1 +
1
2
t2σ2

k| → 0 as n →∞, for every t. (34)

By the Lemma 22.10, this sum (on the LHS in (34)) is almost what we need: it
almost follows that

∣∣∣∣∣

n∏

k=1

ϕk(t)−
n∏

k=1

(1− 1
2
t2σ2

k)

∣∣∣∣∣ = o(1) as n →∞.

Let us call this our claim. But why almost, and not exactly? The Lemma
requires that the modulus is 1. This is clear for the elements in the first term,
since |ϕk(t)| ≤ 1. However, t may be large, and to complete the proof of our
claim, we need to check that | 12 t2σ2

k| ≤ 1, which will follow for large n if we can
prove that

max
1≤k≤n

σk → 0 as n →∞. (35)

Here, this is a slight abuse of notation, because we mean to have

max
1≤k≤n

σnk → 0 as n →∞.

If we can prove (35), then no matter how large t gets, we still have an
estimate on the modulus. This almost follows from the Lindeberg assumption.
Let’s separate out small and large parts in considering

σ2
k = EX2

k = E(X2
k : |Xk| ≤ ε) + E(X2

k : |Xk| > ε)

≤ ε2 + E(X2
k : |Xk| > ε).

By Lindeberg’s Condition, and because ε > 0 is arbitrary, (35) follows. This is
the first time we’re using the Lindeberg condition. This is the usual two-step
limit argument. Thus, our claim is proved.

This is great, because we can get away from characteristic functions and
use asymptotic expressions. The next claim (Claim 2) is that the asymptotic
expression is close to what we need. Claim:

∣∣∣∣∣

n∏

k=1

(1− 1
2
t2σ2

k)−
n∏

k=1

e−t2σ2
k/2

∣∣∣∣∣ = o(1) as n →∞.
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Thus, 1 − x ∼ e−x. This is almost true. What else can we do other than to
apply Lemma 22.10 again? We get that the LHS in this claim is bounded:

LHS ≤
n∑

k=1

|e−t2σ2
k/2 − 1 +

1
2
t2σ2

k|.

We know that the e−t2σ2
k/2 are individually small (close to 1 − x). But, how

small? So, let’s take a number x ∈ R, and let’s look at the quality of the
approximation:

|ex − 1− x| =

∣∣∣∣∣

∞∑

k=2

xk

k!

∣∣∣∣∣ ≤ x2
∞∑

k=2

|x|k−2

k!
≤

∞∑

k=2

|x|k−2

(k − 2)!
= x2e|x|.

This is bad for large x, but we will only use this for small x, for x = t2σ2
k/2.

We are aiming at bounding every term in this sum:

|e−t2σ2
k/2 − 1 +

1
2
t2σ2

k| ≤ t2σ4
ket2σ2

k/2

Since σ2
k/2 ≤ 1 for large n, and t is a constant as well, the LHS in Claim 2 is

bounded:

LHS ≤
n∑

k=1

t4et2σ4
k ≤ t4et2

(
max

1≤k≤n
σ2

k

)
·

n∑

k=1

σ2
k

By (35),
(
max1≤k≤n σ2

k

)
→ 0 and

∑n
k=1 σ2

k = sn = 1, so the LHS → 0 as
n →∞. This prove Claim 2. The claims together imply

n∏

k=1

ϕk(t) =
n∏

k=1

e−t2σ2
k/2 + o(1) = e−t2/2 + o(1).

The left hand side is ϕSn(t). The right hand side is ϕN (t) + o(1). Thus,

ϕSn(t) → ϕN (t) + o(1) as n →∞.

By the Continuity Theorem, the CLT is proved.

Don’t worry if you don’t understand this the first time you see it. The key
is that we are using the Continuity Theorem and keeping track of all errors in
Taylor estimation.

Remark 22.27. If the Central Limit Theorem holds, it is the case that Lin-
deberg Condition “almost” holds. You can look up what the specific situation
is. In your mind, you can almost believe that the Lindeberg Condition is almost
logically equivalent to the Central Limit Theorem condition.

In practice, the Lindeberg condition is difficult, so we propose a new condi-
tion:
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Definition 22.28 (Lyapunov’s Condition). A sequence (Xn) of independent
random variables with mean 0 and variances (σ2

n) is said to satisfy Lyapunov’s
Condition if ∃ p > 2 such that E|Xn|p < ∞, and

(
n∑

k=1

E|Xk|p
)1/p

= o

(
n∑

k=1

E|Xk|2)
)1/2

= o(sn) as n →∞.

Note that one always has (
∑

|ak|p)1/p ≤ (
∑

|ak|q)1/q for any real numbers
(ak) and p ≥ q. This is basically a consequence of the Hölder Inequality. This
says that the p norm is smaller than the q norm. The way I remember the
direction of the inequality is by thinking for the case p = ∞, q = 1.

So, one always has this inequality, but you may have the equality case:
(ak) = (1, 0, 0, 0, . . .) for sparse sequences. How can we expect the Central
Limit Theorem to hold when we have basically all zeroes? Heuristically, if (ak)
is not sparse (if ak is “spread”) then

(∑
|ak|p

)1/p
= o

(∑
|ak|q

)1/q
.

This sort of guarantees that all the random variables are “basically the same.”
It is very simple to prove that in this case, the Central Limit Theorem holds:

Proposition 22.29. Lyapunov’s Condition implies Lindeberg’s Condition.

Proof. Let’s assume Lyapunov’s Condition. We are trying to check the Linde-
berg Condition. If we are in the situation that |Xk| > εsn, then

X2
k ≤

|Xk|p

(εsn)p−2

is estimated using a higher moment. (The easy way to check the correctness of
the above is to cross-multiply.)

To check the Lindeberg Condition,

1
s2

n

n∑

k=1

E(X2
k : |Xk| > εsn) ≤ 1

εp−2sp
n

n∑

k=1

E|Xk|p,

and ε is fixed, so this goes to 0, by Lyapunov’s Condition (except we haven’t
taken pth root).

FEBRUARY 15, 2008

I graded you exam. Your exam will sit in my office, since I have yet to enter
grades into the system. You can have a look at your midterm. You can make
a copy of your midterm. When I contemplate your final grade, sometimes it’s
useful to look at your midterm.
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There was actually one interesting mistake that I didn’t think of. You had
to define for yourself that νn → ∞ in probability. Let’s make an analogous
statement for reals. When you think a sequence an of reals converges to a ∈ R,
we know this is ∀ε, |an − a| < ε for large n. So, it may be false at first, but
it’s a sure event eventually. Now, in probability, νn → ν in probability if ∀ε,
P(|νn − ν| < ε) → 1.

Now what about ∞? What’s a neighborhood of infinity? It’s (b,∞), for
b ∈ N. So, the statement in reals is an → ∞ in probability if ∀M , an > M for
large n. In the probability setting, then νn →∞ if ∀µ, P(νn > M) → 1. Many
of you thought, for some reason, to say νn

n → 1 a.s., or something. What if our
sequence goes to n2, for example? This just says that νn goes to ∞ at a linear
rate.

Today, we’ll do the replacement method of Lyapunov. I’ll mostly follow
the new textbook by Khohnevisan. Over the next couple lectures, we’ll try
to understand quantitative versions of the Central Limit Theorem. The CLT
states that normalized sums converge to the Gaussian. In practice, you are not
satisfied with this. How fast does the error go to zero? Just give me some
numbers. I want an error ε between the distributions, then how many samples
do I have to take? There are lots of quantitative versions of the Central Limit
Theorem, and they are all about error bounds.

We will do a couple of them. One of this is this replacement method by
Lyapunov. It is an alternative proof of the Central Limit theorem, and it will
give you quantitative data.

The idea is simple: we will estimate the distribution of the sum Sn = X1 +
· · · + Xn by replacing its increments Xk one at a time by independent normal
random variables Zk. I want to replace Xn by Zn and keep track of the error.
Then I want to replace Xn−1 by Zn−1 and add to the error. But then in the
end, I’ll have a sum of normal random variables. I only have to keep track of the
errors. How far do we go from Sn by replacing one of the Xi with Zi? This is
basically the idea. It doesn’t go through the theory of characteristic functions.

Theorem 22.30. Let (Xn) be independent random variables with mean 0, and
finite third moments83. Let Sn = X1 + · · · + Xn. Its variance is s2

n. Then the
following holds84: Then, for f ∈ C3(R),

|Ef(Sn)− Ef(N)| ≤ CMf

n∑

k=1

E|Xk|3,

where N is distributed N(0, s2
n), and Mf = supz |f ′′′(z)|.

This is a non-limiting result: it’s just a genuine inequality. This is provided
that Mf is finite.

83This is a weak assumption: it looks a little bit like Lypanov’s condition. You can actually
replace this with 2 + ε moments, but this will be more convenient for proof.

84How do we estimate the distance? There are several ways to do this, and one way is to say
that Xn → X. Recall, this is equivalent to Ef(Xn) → Ef(X) for all bounded and continuous
f . This is a sequence of numbers. So, we’ll go with the right hand side.
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Remark 22.31. The best case to understand this is for i.i.d. random variables
Zk with mean 0 and variance σ2. Let Sn = Z1+···+Zn

σ
√

n
. This is a normalized

sum, and sn = σ
√

n. Then Xk = Zk

σ
√

n
. Then, in the theorem, the RHS is n

identical terms, the third moment of Xk (all the same). We have

RHS ≤ CMf · n
E|Z1|3

σ3n3/2
= O

(
1√
n

)
.

So this error size 1√
n

is remarkable. Then, an exercise is to derive from this
the Central Limit Theorem. The little problem is that you only have f is only
three-times differentiable, but we need some smoothing trick here.

This is a non-asymptotic version of the Central Limit Theorem. It’s just an
inequality, and it tells you an error. One thinks (at first) the bound is not so
good, because it’s a third moment. After normalization, all of this will become
very small.

We will replace random variables one at a time, and keep track of errors.
Before the proof, we’ll need some conventional notation from analysis. People in
analysis will denote ‖X‖p = (E|X|p)1/p for a random variable X. The reason for
this is that it is a norm in Lp. One of the consequences of the Hölder inequality
is a monotonicity property:

‖X‖p ≤ ‖X‖q for p ≤ q.

One way to remember the direction is to use p = 1 and q = ∞. Then, we
compare expectation of X and maximum of X. This is all we need for the
proof.

We know the function somewhere, and we estimate the function somewhere
else by using Taylor’s expansion.

Proof. Using Taylor’s expansion,

f(x0 + x) = f(x0) + xf ′(x0) +
x2

2
f ′′(x0) + r(x),

where |r(x)| ≤ Mf

6 |x|3. Use this for x0 = Sn−1 and x = Xn. What we get is

f(Sn) = f(Sn−1) + Xnf ′(Sn−1) +
X2

n

2
f ′′(Sn−1) + r(Xn),

where
|r(Xn)| ≤ Mf

6
|Xn|3.

This holds true for any fixed realization of random variables. Now we take the
expectation. The linear term will disappear because of mean zero: EXn = 0,
and EX2

n = σ2
n. By independence85, what we get is

Ef(Sn) = Ef(Sn−1) +
σ2

n

2
Ef ′′(Sn−1) + R,

85Sn−1 and Xn are independent: This is used for the quadratic term.
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where |R| ≤ Mf

6 (‖Xn‖3)3. This holds true for every distribution86 of Xn. In
particular, it will hold true if we replace Xn by Zn, which is N(0, σ2

n), and we
note Zn has third moments. Then,

E(Sn−1 + Zn) = Ef(Sn−1) +
σ2

n

2
Ef ′′(Sn−1) + R′,

with
|R′| ≤ Mf

6
‖Zn‖33. (36)

The RHS did not change (essentially, except for the R term), because it only
dealt with Sn−1, and not Xn. So, what is the effect before and after replace-
ment? Let’s compare:

|Ef(Sn)− Ef(Sn−1 + Zn)| = |R−R′| ≤ |R|+ |R′|. (37)

If in (36), Zn is replaced by Xn, we’d be done. So, we claim that basically we’re
done:

Claim 22.32. ‖Zn‖3 ≤ C‖Xn‖3.

Proof of the Claim. First, we divide by σn. Then Zn/σn is N(0, 1). Set C =
‖Zn/σn‖3. Hence,

‖Zn‖3 ≤ Cσn = C‖Xn‖2 ≤ C‖Xn‖3,

by Hölder’s inequality.

With the claim proved, the RHS in (37) is ≤ C ′|R| = C ′′Mf‖Xn‖33.
Here’s what we proved:

|Ef(Sn)− Ef(Sn−1 + Zn)| ≤ C ′′Mf‖Xn‖33.

We keep doing this iteratively, or formally, we apply induction. Then,

Ef(Sn)− Ef(
n∑

k=1

Zk)| ≤ C ′′Mf

n∑

k=1

‖Xk‖33.

Replace one at a time and use the triangle inequality.
Because Zk is N(0, σ2

k) independent, we get

n∑

k=1

Zk

is N(0,
∑n

k=1 σ2
k) = N(0, s2

n), which finishes the proof of the theorem.
86Now, comes the replacement idea.
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This is a nice idea: replace one at a time with normals, and use Taylor’s
expansion.

The exercise again is to get the familiar form of the CLT from this state-
ment. What is the difference of the probabilities between events on Sn and
events on N?. I would suggest you use functions f that are indicators, but f is
discontinuous, so if you smooth it a little bit. You only lose a little bit in the
energy of the Gaussian. So, instead of the expectations, it would be good to get

P(a ≤ Sn ≤ b)− P(a < N ≤ b)| ≤?

FEBRUARY 20, 2008

Today, I will give you (without proof) one theorem that is slightly stronger
than the replacement method of Lyapunov. It has a long proof, but it’s simple
to believe it.

22.5 Berry-Esseen Theorem

This corresponds to the Replacement Method of Lyapunov for f = 1(−∞,a].
The way we estimated distance between distributions was to compute

|Ef(Sn)− Ef(N)|. (38)

For the CLT to hold, we needed this to → 0. The Replacement Method gave us
an upper bound on (38). We would like to apply this to indicator functions, but
we had the requirement that f ∈ C3(R). This theorem corrects this problem:

Theorem 22.33 (Berry-Esseen Theorem). Let (Xk) be independent random
variables with mean zero and finite third moments. Consider Sn = X1+· · ·+Xn.
Define

sn := var(Sn) =
n∑

k=1

σ2
k =

n∑

k=1

EX2
k .

Then,

sup
x

∣∣∣∣P
(

Sn

sn
≤ x

)
− P(N ≤ x)

∣∣∣∣ ≤
C

∑n
k=1 E|Xk|3

s3
n

,

and C is an absolute constant.

So, if you could apply the Replacement Method of Lyapunov for indicator
functions, then this is what you get.

Example 22.34. The basic example for which we want to understand this is
for (Xk) are i.i.d., with EX2

k = σ2 and E|Xk|3 = γ3. Then, sn = σ
√

n. Thus,

sup
x

∣∣∣∣P
(

Sn

sn
≤ x

)
− P(N ≤ x)

∣∣∣∣ ≤
Cγ3n

σ3n3/2
=

Cγ3

σ3
· 1√

n
.

So the error in the CLT is O
(

1√
n

)
.
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So, right from here we get the usual Central Limit Theorem, and we get a
rate of convergence. The proof of the Theorem can be found, for example, in
[Gut].

As we increase x, the error should reflect this, and the error should decrease.

Remark 22.35. The RHS in the example above can be improved to

Cγ3

σ3
· 1
(1 + |x|3)

√
n

for all x ∈ R.
In the example above,

∣∣∣∣P
(

Sn

sn
≤ x

)
− P(N ≤ x)

∣∣∣∣ ≤
Cγ3

σ3
· 1
(1 + |x|3)

√
n

for all x ∈ R.
This can be found in [Petrov: Sums of independent random variables].

Remark 22.36. People invested a whole lot of time into finding the best known
constant C. The best known is C ≤ 0.79, according to [Gut].

Remark 22.37. In the Replacement Method of Lyapunov, and also in the
Berry-Esseen Theorem, the third moments can be replaced by any (2 + δ)-
moment, for any δ > 0.

For the CLT itself, no moment higher than 2 is necessary. But for more
useful/quantative results, you’ll need a stictly higher moment (see [Gut]).

22.6 Large Deviation Inequalities

What is so good about having a random variable close to the normal random
variable, in practice? What’s so spectacular about them? It settles down very
quickly. Normal random variables have light tails. Namely,

P(|N | > t) ∼ e−t2/2, t ∈ R.

For example, if t = 3, then 1− P(|N | > t) = 99.7%.
So, in the spirit of the LLN, the sum of variables is near the mean. But, the

CLT suggests the convergence to N very very quickly.
The tails being light is useful for estimating deviations of Sn from its mean.

We can expect that

P(|Sn/sn| > t) <∼ e−t2/2, t ∈ R. (39)

This is our ideal. Maybe there is an extra numerical constant in front. We do
not know this:
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However, the Berry-Esseen Central Limit Theorem is much weaker, because
of the error O(1/

√
n). We can only expect that

P(|Sn/sn| > t) <∼ e−t2/2 +
c√
n

.

This is too bad. We had a small tail before, but now after applying the CLT,
we might have a large tail. A tail whose mass is even larger than the error.

So here comes the Theory of Large Deviations. We don’t care about normal
approximation. We will no longer compare Sn

sn
to N . We want to estimate the

tails of Sn
sn

directly. Our ideal is (39). To prove this through the CLT won’t
work. For (39) to be true in general, one will need higher moments, because the
tail is so good: It is necessary that Sn

sn
has all moments. Is it clear why?

E|X|p =
∫ p

0
|t|p P(|X| > t) dt.

Theorem 22.38. Let (Xk) be independent random variables with mean zero,
and |Xk| ≤ ak. (In particular, we have all moments.) Let a2 =

∑n
k=1 a2

k.
Consider their sum Sn = X1 + · · ·+ Xn. Then,

P(|Sn| > t) ≤ 2e−t2/2a2
, t > 0.

The presence of a2 on the right hand side is only for normalization.

Example 22.39. Think about a = 1. Sn =
∑n

k=1 akZk, with Zk being a −1, 1
Bernoulli random variable. So, Sn is a weighted sum of Bernoulli’s. Then
var(Sn) = a = 1. Here, the consequence of this theorem is that

P(|Sn| > t) ≤ 2e−t2/2, t > 0.

The RHS doesn’t even have an n in it! The CLT will fail for a finite number of
random variables, yet this deviation inequality will hold.

In practice, we draw intuition from the CLT to see what is the proposed
limit. But we base our rigorous conclusions on deviation inequalities.

So, we will prove this theorem:

Proof. The proof uses the moment generating function M of a random variable
X, which is defined (see [Billingsley] or [Gut]) to be

M(λ) = EeλX , λ ∈ R.

We will use this fact: If X has mean zero and |X| ≤ 1, then

M(λ) ≤ eλ2/2.

This will be an exercise in the HW. You might use Taylor’s Expansion, up to
three terms.
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How do we use this? We start with Chebychev’s Inequality: P(|X| > t) ≤
E|X|

t . This is too weak, because of the polynomial decay, instead of super-
exponential decay. So, instead, multiply both sides by λ, and then exponentiate.
We take λ > 0. Then use Chebychev’s inequality:

P(X > t) = P(eλX > eλt) ≤ e−λtEeλX . (40)

This is already better, because we have an exponential tail. We will optimize
the choice of λ to be proportional to t later.

We will use this for Sn. Since Sn is a sum, eSn will factor into a product.
The expectation will factor. So in the end, we’ll end up with moment generating
functions of individual random variables.

Using the fact,

EeλXk = Ee(λak)(Xk/ak) ≤ Eeλ2a2
k/2.

Now we estimate the moment generating function of the sum:

EeλSn = E
n∏

k=1

eλXk
indp=

n∏

k=1

EeλXk ≤
n∏

k=1

eλ2a2
k/2 = eλ2a2/2.

By (40),
P(Sn > t) ≤ e−λt+λ2a2/2.

Now λ was a parameter, and now we optimize. We optimize λ to make
λt− λ2a2/2 maximal. So we differentiate to get

t− λa2/0,

so λ = t/a2. So the maximal value is t2

a2 − t2

a2
a2

2 = t2

2a2 .
So, the conclusion is

P(Sn > t) ≤ e−t2/2a2
,

which is precisely what we want.
We repeat the argument for −Sn to complete the proof.

FEBRUARY 22, 2008

One remark to finish last time’s large deviation inequalities. In the literature,
you’ll find large deviation inequalities under the names

• Berstein Inequality. This is more general. Check out Wikipedia.

• Chernoff Inequality. This is for Bernoulli random variables

• Prokhorov-Bennett Inequality. The most general. It covers both normal
and Poisson limits.
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Recall what we did, reflected very much the Berstein Inequality. There are in-
equalities that interpolate between Poisson and normal random variables. There
is a very large body of literature on large deviation limits. I thought I’d just
give you some names to help you in reading.

We will start going towards Central Limit Theorem in higher dimensions.

23 Limit Theorems in Rd

They are important for two reasons: Geometry and Multivariate. Ninety per-
cent of the theory is appropriate modifications of the one-dimensional case. It
will be useful to remind you the 1-dim case. Occasionally, there will be some
interesting facts.

23.1 Review of Theory of Random Vectors

We will consider now a random vector X with values in Rd (rather than R1).
The distribution of X is given by the values P(X ∈ A), where A ⊂ Rd is
Borel. The distribution function defines the distribution of X. The distribution
F : Rd → [0, 1] is defined as

F (x) = P(X ≤ x).

It’s enough to know values on a basis. In higher dimension, we need to inter-
pret what it means for one vector to be smaller than another. Here, we mean
coordinate-wise:

F (x) = P(X ≤ x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd).

The random variable X has density f : Rn → R+ if

F (x) =
∫ x

−∞
f(y) dy.

This was the one-dimensional case. So, now we know, from our coordinate-wise
partial order, that this should mean (in d dimensions)

∫ x1

−∞
· · ·

∫ xd

−∞
f(y) dyd · · · dy1.

Let X, X1, X2, . . . be random vectors of the same dimension. We say that a
sequence Xn → X in distribution if

Fn(x) → F (x) for all points of continuity x of F.
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23.2 Analogous results

There is the same basic theory for random vectors:

Theorem 23.1 (Continuous Mapping Theorem). (a) If f is a continuous func-
tion and Xn → X in distribution, then f(Xn) → f(X) in distribution.

(b) Even if f is not continuous, but

P(X ∈ Df ) = 0

where Df is the set of discontinuities of f , then

f(Xn) → f(X) in distribution.

It holds without any change for random vectors, and the proof is the same.
Helly’s Selection Theorem holds also. The proof is similar.

23.3 Characteristic functions

The interesting part happens when we look at characteristic functions. The
characteristic function of a random vector X is ϕ : Rd → R given by the rule

ϕ(t) = Eei〈t,X〉

where t ·X = 〈t, X〉 =
∑d

k=1 tkXk.
A variant of the Inversion Formula holds, and in particular, it implies the

Uniqueness Theorem.

Theorem 23.2 (Uniqueness Theorem). The characteristic function function
determines the distribution of a random variable uniquely.

Also, a variant of the Convergence Theorem holds:

Theorem 23.3 (Convergence Theorem). Xn → X in distribution iff ϕn(t) →
ϕ(t) for every t ∈ Rd.

In one direction, this is easy. If Xn → X in distribution, then then the Con-
tinuous Mapping Theorem will give us what we need. We’ll have convergence
almost surely (after applying the Skorohod Representation Theorem). In the
opposite direction, it was not easy, as you recall. We show the sequence is tight,
and then used Helly’s Selection Theorem.

Thus, there are no surprises so far. Everything is like the one-dimensional
case. The surprise will come now. The following has no analogue in one dimen-
sion.
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23.4 Cramer-Wold Device

This is a way to reduce higher-dimensional probabilistic claims to one dimension.
It is a way to reduce it right away from d to 1.

So here is one remarkable theorem that is not quite the Cramer-Wold Device,
but it’s nice, and has all the flavor of it:

Theorem 23.4. The distribution of a random vector X in Rd is uniquely de-
termined by P(X ∈ H), where H is a half-space.

Equivalently, a positive measure µ on Rd is uniquely determined by its values
µ(H) on halfspaces H. This is a remarkable result! There is no elementary proof
of this known. Modulo what we already know, the proof is simple, though.

Proof. Define a linear functional ht : Rd → R by ht(x) = t · x, x ∈ Rd. Then all
halfspaces have the form87

Ht,α = {x : ht(x) ≤ α} for some t ∈ Rd, α ∈ R.

Then P(X ∈ Ht,α) = P(ht(X) ≤ α) is known. The RHS is much better,
because we have a random variable (on the LHS, we have a random vector).

As a consequence: To know the probability P(X ∈ Ht,α of all half-spaces
is to know the distribution of the random variables ht(X) for every t. So, we
know the characteristic functions

ϕht(x)(s) = Eeisht(X) = Eeist·X = ϕX(st) = ϕX((st1, st2, . . . , std)).

So we know know the RHS (since we know the RHS). Using this for s = 1,
I now know the characteristic function ϕX(t) for every t. By the Uniqueness
Theorem, we are done. We know the distribution of X.

Every “we know” is clear: it means uniquely determined.
So this is the Cramer-Wold Device. We introduced a set to reduce to one

dimension.

Theorem 23.5 (Cramer-Wold Device). Let (Xn) be a sequence of random vec-
tors in Rd. Then Xn → X in distribution iff the random variables

t ·Xn → t ·X in distribution for every t ∈ Rd.

This is the device. If we want to prove a higher-dimensional result, we can
reduce to one-dimensional results.

Proof. We will leave necessity as an exercise. It should be very close in spirit
to the proof of the first Cramer-Wold Device proof. So, it should follow by the
continuity theorem.

87The equations of the form t · x = α are hyperplanes.
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For sufficiency: We will just check the characteristic functions. By the Con-
vergence Theorem,

ϕt·Xn(s) → ϕt·X(s) for every s ∈ R.

That is,
Eeist·Xn → Eeist·X .

For s = 1, this means
ϕXn(t) → ϕX(t).

Since t was arbitrary, another application of the Convergence Theorem shows
that Xn → X in distribution.

FEBRUARY 25, 2008

23.5 Normal Distribution and CLT in Rd

Today we’ll do the Central Limit Theorem is higher dimensions.
A random vector X = (X1, . . . , Xd) in Rd has standard normal distribution

if its components Xk are independent standard normal random variables. We
also call it the Gaussian in Rd. We can compute the density, since we know the
density of each coordinate, and because of the independence. Thus, the density

fX(x) =
d∏

k=1

fXk(xk) =
d∏

k=1

1√
2π

e−x2
k/2 =

1
(2π)d/2

e−
P

x2
k/2 =

1
(2π)d/2

e−|x|
2/2,

where |x| denotes the Euclidean norm of x ∈ Rd. Similarly, the characteristic
function88 is

ϕX(t) = Eei〈t,X〉

= Eei
Pd

k=1 tkXk

= E
d∏

k=1

eitkXk

=
d∏

k=1

EeitkXk , by independence

=
d∏

k=1

ϕXk(tk)

=
d∏

k=1

e−t2k/2

= e−|t|
2/2.

88Remember here that t is a vector.
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for t ∈ Rd.
Two remarkable things happened here. The density and the characteristic

function only depended on the Euclidean norm, not the direction. We can call
this a rotation invariance.

Definition 23.6. A measure µ in Rd is rotationally invariant if for every or-
thogonal transformation U of Rd, and every Borel set B ⊆ Rd, if

µ(B) = µ(UB).

Recall that a matrix U is orthogonal if U ′U = I.

Corollary 23.7. The standard normal distribution in Rd is rotationally invari-
ant.

The density doesn’t depend on the direction.

Proof. We need to check that P(X ∈ UB) = P(X ∈ B) is true for every B and
U . This follows from

P(X ∈ UB) =
∫

UB
fX(x) dx.

We make the change of variable which changes UB to B. The determinant is
1, thus the integral is ∫

B
fX(Uy) dy.

But the density is rotationally invariant (that is |Uy| = |y|), so this is
∫

B
fX(y) dy,

and this is P(X ∈ B).

So, the standard normal distribution is rotationally invariant. Thus the
density is a body of revolution.

This has an interesting geometric consequence that would be hard to con-
struct otherwise. It immediately follows from the rotational invariance:

Corollary 23.8. There exists a rotationally invariant measure on the unit Eu-
clidean sphere Sd−1.

We have to adjust the definition of rotational invariance for spheres in the
obvious way. It would be hard to get this result using Lesbesgue measure
because of the rectangular shape. We already have a rotationally invariant
measure on Rd. Now we have to contract it.
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Proof. The proof is by contraction of the standard normal distribution in Rd

onto Sd−1.
Let X be a standard normal vector in Rd. we consider Z = X

|X| . Then
Z is a random vector with values in Sd−1 and Z is rotationally invariant89:
P(Z ∈ UB) = P( X

|X| ∈ UB) (exercise, using the Law of Large Numbers).

Now comes a little bit different part. If we want a Central Limit Theorem
in Rd, we need to normalize by the variance. As soon as we go from random
variables to random vectors, there’s no concept as variance anymore, since dif-
ferent components have different variances. We need to normalize in a different
way, so we need the concept of covariance.

23.5.1 Covariance Matrix of a Random Vector

Let X be a random vector in Rd. Its covariance matrix Σ is the d × d matrix
with entries

σij = E(Xi − EXi)(Xj − EXj).

If d = 1, then Σ’s only entry is the variance.

Proposition 23.9. Σ is a symmetric and positive semidefinite90 matrix.

Proof. Symmetry is obvious. For the positive semidefiniteness, we can assume,
without loss of generality, that the expectations EXi are all zero, by translating
our random variables, the coordinates of the random vector. Let x ∈ Rd be
arbitrary. Then,

〈x,Σx〉 =
∑

i,j

σijxixj = E




∑

i,j

XiXjxixj



 = E
(

∑

i

xiXi

)2

≥ 0.

Example 23.10. The basic example is when the components are independent.
Let X = (X1, . . . , Xd) be a random vector with independent components. Then

Σ =




σ2

1
. . .

σ2
d



 ,

where σ2
i is the variance of Xi. So for independent random variables, we don’t

need a matrix.

When we studied random vectors, our study was to bring back problems to
variance 1. We want to do the same thing here. We will invert the matrix.

89This is shorthand for the distribution of Z is rotationally invariant.
90A matrix Σ is positive semidefinite if 〈x, Σx〉 ≥ 0 for all x.
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Proposition 23.11. Let X be a random vector in Rd with mean 0 and covari-
ance matrix I. Then,

1. If A is a d×d matrix91, then the random vector Y = AX has mean 0 and
covariance matrix

Σ = AA′.

2. If Σ is a covariance matrix of some random vector, then

Σ = AA′

for some d× d matrix A.

From the form Σ = AA′, it is clear that A is symmetric and positive semidef-
inite.

Proof. 1. σij = EYiYj = E〈Ai, X〉〈Aj , X〉, where Ai is the ith row of the ma-
trix A. This is equal to E(

∑
k AikXk)(

∑
& Aj&X&). We multiply all of them

out. Of the d2 terms, the off-diagonal ones are all zero. The only terms
that survive are when k = +. So this is now equal to E

∑
k AikAjkX2

k =∑
k AikAjk, since the covariance matrix is the identity. And this is equal

to (AA′)ij .

2. Then Σ is a symmetric and positive semidefinite matrix, by Proposition
23.9. Use the Polar92 decomposition93, that Σ = U ′DU , where U is
orthogonal and D ≥ 0 is diagonal. Let A = U

√
D.

Then Σ = (U ′√D)(
√

DU) = AA′.

FEBRUARY 27, 2008

We are trying to prove the CLT in higher dimension. The first the thing we
do is to describe what is the Normal distribution in Rd.

23.6 Normal distribution in Rd

We know what the standard normal is. It’s a random vector whose components
are independent standard normals. A normal is the linear image of a standard
normal:

Definition 23.12. A random vector Y in Rd has centered normal distribution
if Y = AX, where A is some non-singular d × d matrix, and X is a standard
normal random vector.

91A linear transformation of this vector
92or Singular Value Decomposition
93For a positive semidefinite matrix M , the choice of the right basis shows that M stretches

in certain directions, never rotates.
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We always look at mean zero. This is the significance of the word “centered.”
A compeletly general normal distribution may have a non-zero translation (i.e.,
a non-zero mean) as well.

Once we have this, then, the covariance matrix is easy: Σ = AA′. This is
by Proposition 23.11. Its characteristic ufnciton is

ϕY (t) = Eei〈t,AX〉.

We want to move A from the right side of 〈·, ·〉 to the left side. Thus, this is
equal (by using adjoint) to

= Eei〈A′t,X〉 = ϕX(A′t) = e−|A
′t|2/2.

Now, how do we compute |A′t|2?

|A′t|2 = 〈A′t, A′t〉 = 〈t, AA′t〉 = 〈t,Σt〉,

hence the characteristic function is

ϕY (t) = e−〈t,Σt〉/2.

Apart from being just a computation, this has an important consequence:
the characteristic function is determined by Σ only. And the characteristic
function determines the distribution uniquely. So, by the Uniqueness Theorem,
we have the important corollary

Corollary 23.13. A centered normal distribution in Rd is uniquely determined
by its covariance matrix.

Of course, it doesn’t happen for other distributions. There are different
distributions with identity covariance matrix. This is the analogue of the case
in R1: when we know σ (and assume µ = 0), we know exactly the Gaussian
described.

Not only does this determine (as the corollary promises) the distribution of
the centered normal, it can also be defined in this way.

Now, we need to compute the density, which will give us a third alternative
definition of the centered normal. Recall the 1-dimensional case. The density
of a centered normal random variable N(0, σ2) with variance σ2 was

f(x) =
1√
2πσ

e−|x|
2/2σ2

.

To check whether or not σ belongs under the radical or not, we can do a change
of variables, with X being N(0, 1) and Y = σ ·X being N(0, σ2). Then we need
the lemma

Lemma 23.14 (Change of variable). Let X be a random vector in Rd with
density f(x). Let g : Rd → Rd be a one-to-one continuously differentiable map.
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Let T = g−1, also one-to-one and continuously differentiable. Then, the density
of the random variable g(X) is

f(T (x)) · |detJ(x)|,

where J(x) is the Jacobian matrix of T .

What is the Jacobian matrix? Recall: write T (x) = (T1(x), . . . , Td(x)),
where Tk : Rd → R. Then the Jacobian matrix is

J(x) =





∂T1
∂x1

· · · ∂T1
∂xd

...
. . .

...
∂Td
∂x1

· · · ∂Td
∂xd



 .

How do we prove this? With higher dimensional calculus:

Proof. For a Borel set A in Rd,

P(Y ∈ A) = P(g(X) ∈ A) = P(X ∈ T (A)).

We know the density of X, so this is just the integral of the density, namely
∫

T (A)
f(x) dx.

Now we change variables in the standard way in calculus. We take x = Ty.
Then, this is equal to ∫

A
f(Ty)|det J(y)| dy.

The proof is complete, because the integrand in the previous expression must
be the density for Y .

In our case, we want to compute the density of a normal random variable.
So, in our case, the vector Y = AX is a linear image of the standard normal
random vector X, and A is a matrix given by the covariance: Σ = AA′. So,
by the Lemma, our g is a linear map, with g = A and T = A−1. Hence94,
J(x) = A−1. Therefore, the density of Y is

f(A−1x)|detA−1|, (41)

where f(x) = 1
(2π)d/2 e−|x|

2/2 is the density of the standard normal.
So we need to compute detA−1. Our ultimate goal is to express everything in

terms of Σ. Well, det(A−1) = (detA)−1. By the same multiplicativity property,
det Σ = (detA)(detA′) = (det A)2. So

det(A−1) = (det Σ)−1/2.

94The Jacobian of a matrix is the matrix itself.
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There is another A (namely the A−1 in the argument of f) to take care of
in (41). What is |A−1x|2?

|A−1x|2 = 〈A−1x, A−1x〉 = 〈x, (A−1)′A−1x〉 = 〈x,Σ−1x〉.

So now we have everything in the formula (41). Putting this all together,
we obtain

Proposition 23.15. The density of the centered normal distribution in Rd with
covariance matrix Σ is

f(x) =
1

(2π)d/2(detΣ)1/2
e−〈x,Σ−1x〉/2.

All of the constant in front is the appropriate normalization to make the
integral of f on all of Rd equal to 1. In 〈x,Σ−1x〉, we are “distorting” the
standard normal: Σ makes the stretches perhaps different in different directions.

In this Proposition, even in this, we implicitly use the Corollary. Here, we
applied the Corollary just to state this.

Now, the main result we are heading to is the Central Limit Theorem in
higher dimensions.

23.7 Central Limit Theorem in Rd

Recall the one-dimensional Central Limit Theorem: for i.i.d. random variables
Xk with mean 0 and variance σ2, consider the sum Sn = X1 + · · ·+ Xn. Then

Sn

σ
√

n
→ N(0, 1) in distribution.

Now, in higher dimensions, we can not have Σ in the denominator, since it
is a matrix. Thus, we must state into some kind of reasonable form, and so we’ll
provide the analogue for R1 as

Sn√
n
→ N(0, σ2) in distribution.

So, this rewording can be generalized, since we know what will take the role of
σ here.

Theorem 23.16 (Central Limit Theorem in Rd). Let (Xn) be independent and
identically distributed centered random vectors in Rd with covariance matrix Σ.
Then the sums Sn = X1 + · · ·+ Xn satisfy

Sn√
n
→ N in distribution,

N is a centered normal random vector in Rd with covariance matrix Σ.

The proof of this is simple modulo the Cramer-Wold Device.
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Proof. It suffices to show that if we hit the left and right side by any fixed vector
t, then we have proved the result. Thus, we wish to show that for all t ∈ Rd,
one has

〈t, Sn/
√

n〉 → 〈t, N〉

in distribution. Note, these are scalars.
We can write the LHS as a sum of i.i.d random variables:

〈t, Sn√
n
〉 =

1√
n

n∑

k=1

〈t, Xk〉. (42)

We use the one-dimensional Central Limit Theorem for this sum. We first need
to check the variance (since we’ve only normalized by

√
n and not σ

√
n. So we

check

E〈t, Xk〉2 = E




d∑

j=1

tjXkj




2

= E
∑

i,j

titjXkiXkj ,

When we bring the expectation inside here95

∑

t,j

titjσij ,

where Σ = (σij). This is
= 〈t, Σt〉.

For a similar reason, the variance E〈t,N〉2 is also 〈t,Σt〉. Thus the variances
agree. Then, by the one-dimensional CLT and (42),

〈t, Sn√
n
〉 → 〈t,N〉 in distribution.

We are done by the Cramer-Wold Device.

This completes the big part of the course. In what remains, we’ll start on
conditional expectation and the theory of martingales, going as far as we can.

FEBRUARY 29, 2008

I’ve updated the home work 7, problem number 5. Today we are starting a
big section on conditional expectation.

24 Condition Expectation

I will roughly follow [Durrett, 4.1]. When you talk about conditional expectation
in probability theory, it gets very high-level. If you haven’t seen it before, it
might be difficult to get used to.

95The random vectors are independent, but the coordinates inside each are not necessarily.
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So, what is the problem? We know how to define conditional probability:
for events A and G,

P(A|G) =
P(A ∩G)

P(G)
.

This may be interpreted as the probability that A occurs given the information
that some other event G occurs: If we know that G occurs, we want to stay
only in G. But, G itself is not a probability space. The division by P(G) is for
normalization.

Using this, the best idea to define conditional expectation of a random vari-
able is as follows: The conditional expectation of a random variable X given an
event G is96

E(X|G) =
1

P(G)
E(X1G) =

1
P(G)

∫

G
X dP =

1
P(G)

∫

G
X(ω) dP(ω).

We normalize the same way since we want to stay in G.
This is fine. Everything is okay, except when P(G) = 0. This is not defined

when P(G) = 0. Who cares about these events that are very small?
For example, suppose X and Y are random variables with densities. There

might be some correlation between them. If we do not know Y , the best guess
about X is EX. If we know the value of Y , say Y = y, our best guess about X
given the information Y = y would be

E(X|Y = y).

But, because Y has density, the probability of this event Y = y is zero. So,
this conditional expectation is not defined. So, to treat this case in particular,
we will need a rich theory of conditional expectation. This will also affect our
theory of conditional probability. The theory will be based on this miracle the-
orem in Lesbesgue mesaure, which we will not prove called the Radon-Nikodym
Theorem.

This develops the motivation. We will give a definition of expectation given
a σ-algebra. This particular case E(X|G) will occur when the σ-algebra has just
two non-trivial97 events: just G and Gc.

24.1 Conditional expectation given a σ-algebra

We will consider probability spaces (Ω,F), P) with different F . The idea of
varying a σ-algebra is very natural here: As soon as you want to take expectation
with respect to G, you are down to the σ-algebra generated by G.

A random variable X on (Ω,F , P) is called F-measurable.

Definition 24.1. Let (Ω,F , P) be a probability space. Suppose X is an F-
measurable random variable. Let G ⊂ F be a σ-algebra98. The conditional
expectation of X given G, denoted E(X|G) is a random variable Y such that:

96So far, this should conceptually make sense what we are trying to ask here.
97The trivial events are ∅ and the whole probability space.
98G is a coarser σ-algebra. For example, G may be generated by two events.
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(i) Y is G-measurable.

(ii) For G ∈ G, ∫

G
X dP =

∫

G
Y dP.

We will prove existence and uniqueness later.

Example 24.2. Let G be an event such that P(G) > 0, and G = σ({G}) =
{∅, G,Gc,Ω}. Then,

E(X|G)(ω) =
{

E(X|G), if ω ∈ G
E(X|Gc), if ω ∈ Gc.

}
= Y (ω)

The random variable defined above is a conditional expectation:

Proof. Y is G-measurable, because {ω : Y (ω) ∈ B} is in G for every Borel set B
in R. Every pre-image we will attempt to take pre-image of will either contain
the real number E(X|G) or it wont, and will either contain the number E(X|Gc)
or it wont.

How about (ii)? We need to show that for arbitrary events, the integrals
agree. We need to check that

∫

G
X dP =

∫

G
Y dP

and ∫

Gc

X dP =
∫

Gc

Y dP.

Let’s check out the first of these. The RHS
∫

G
Y dP =

∫

G
Y (ω) dP(ω) =

∫

G
E(X|G) dP = P(G) · E(X|G),

since E(X|G) is a constant. By the definition of conditional expectation, this is
∫

G
X dP.

The interpretation of this is: Suppose that for an outcome ω, we know
whether G occurs or not, for every G, but we do not know the outcome ω itself.
Our only access to the nature of the experiment is by observing whether events
G in the σ-algebra G occur or not99. Then E(X|G)(ω) is our best guess of X
given this information100.

99In the example of a plane, we might know whether planes were delayed or not, but not
the exact weather condition.
100Example: We have a history of planes. We want to guess a random variable X. Suppose

there is a storm. Then, we want to take an average of the history of planes only in a storm.
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24.2 Existence and Uniqueness of Conditional Expecta-
tion

We prove that the conditional expectation exists and is unique. This follows
from a very general and very beautiful theorem in measure theory, the Radon-
Nikodym Theorem.

Definition 24.3. Let µ, ν be two measures on (Ω,F). We say that ν is abso-
lutely continuous with respect to µ, and write ν > µ, if

µ(A) = 0 implies ν(A) = 0 for A ∈ F .

Example 24.4. • µ is the Lebesgue measure on R, and ν is the standard
normal distribution on R:

ν(A) =
1√
2π

∫

A
e−x2/2 dx.

• Generally, ν > µ if

ν(A) =
∫

A
f dµ

where f is µ-integrable function (density).

A measure µ is σ-finite if there is a decomposition of Ω into a countable
number of sets:

Ω =
∞⋃

k=1

Ωk

such that µ(Ωk) < ∞ for all k. One example is Lesbesgue measure.
The Radon-Nikodym theorem says that this general example is the only way

these arise:

Theorem 24.5 (Radon-Nikodym). Let µ, ν be σ-finite measures on (Ω,F). If
ν > µ, then there exists an F-measurable function f such that

ν(A) =
∫

A
f dµ for A ∈ F . (43)

The function f is usually called the Radon-Nikodym derivative of ν with
respect to µ, and is denoted f = dµ

dν . We can think of (43) as a version of a
Fundamental Theorem of Calculus.

We will take µ = P, and tak ν(G) :=
∫

G X dP.

MARCH 3, 2008

We’re doing this section on conditional expectation. Let’s recall what it is.
We have a probability space (Ω,F , P), but now we’ll be looking at different
σ-algebras. Consider a σ-algebra G ⊂ F that is coarser than F . Then, the
conditional expectation of a random variable X with respect to G, denoted
E(X|G), is a random variable Y such that
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(i) G-measurable,

(ii)
∫

A Y dP =
∫

A X dP for all A ∈ G.

The trivial case is when G is trivial. Then, this is the usual expectation.

Theorem 24.6. The conditional expectation of an integrable random variable
X exists and is unique (up to a null set101).

Uniqueness will be easy. Existence will follow from the Radon-Nikodym
Theorem.

Theorem 24.7 (Radon-Nikodym). If ν, µ are σ-finite measures on (Ω,F) and
ν > µ, then there exists an integrable function f = dν

dµ such that

ν(A) =
∫

A
f dµ

for A ∈ F .

This is a generalization of the Fundamental Theorem of Calculus.

Proof of Theorem 24.6. To prove existence, the Radon-Nikodym Theorem102 is
applied. We will first do the case that X ≥ 0. For every set A, we know

∫
A X dP.

For every A, the RHS of the definition (part (ii)) gives us a number. This will
be our µ. So, in the notation of the Radon-Nikodym Theorem for (Ω,G), µ = P.
And, ν is defined by

ν(A) :=
∫

A
X dP for A ∈ G.

Indeed, ν is a measure. The usual properties of integration will give you that
this is a measure. Then, ν is a σ-finite measure (Exercise). Clearly ν > µ: If A
is a null set with respect to µ, then integration over that set A gives you zero.

Thus, we are in the situation of the Radon-Nikodym Theorem. We conclude
from it that there is a G-measurable function f such that

ν(A) =
∫

A
f dP for all A ∈ G.

We’ll take this function to be our random variable: Taking Y := f satisfies
both properties defining conditional expectation. This proves existence103, for
non-negative x.

For arbitrary X, decompose X = X+ −X− with X+ ≥ 0 and X− ≥ 0. We
find the conditional expectation of each part. Consider

Y1 := E(X+|G)

Y2 := E(X−|G),
101up to a set of measure zero.
102actually, there is a version of this for signed measures.
103We looked at f is a density, but then we view it as a random variable in the end. This is

quite interesting approach.
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which exist by the above. Then define Y = Y1 − Y2. Then of course Y is
G-measurable (it is the difference of two G-measurable functions). The second
property just follows by linearity:

∫

A
Y dP =

∫

A
Y1 dP−

∫

A
Y2 dP =

∫

A
X+ dP−

∫

A
X− dP =

∫

A
X dP.

Uniqueness is easy: Suppose that Y and Y ′ both satisfy the properties of
the conditional expectation104. By (ii), one has

∫

A
Y dP =

∫

A
Y ′ dP for all A ∈ G.

Then
∫

A(Y −Y ′) dP = 0 for all A ∈ G. Consider the set Aε where Y −Y ′ > ε
for ε > 0. Then

0 =
∫

Aε

(Y − Y ′) dP ≥ P(Aε) · ε.

Then, P(Aε) = 0 for all ε > 0. Since {Y − Y ′ > 0} =
⋂∞

n=1 A 1
n
. Then, the

continuity property of probability measures implies

P(Y − Y ′ > 0) = 0.

Similarly, by interchanging the roles of Y and Y ′, P(Y ′ − Y > 0) = 0. These
together imply that Y = Y ′ almost surely105.

Some examples:

Example 24.8. 1. The trivial σ-algebra G = {∅,Ω}. Then, just being G-
measurable is a strong condition. Condition (i) implies Y is a constant
(almost surely). We can even guess what constant it is: We would guess
that it is usual expectation. In fact, Y = EX.
Indeed, we check condition (ii), namely, we check that

∫

A
(EX) dP =

∫

A
X dP

for A = Ω (the only one needing to be checked). This is true, since the
RHS is expectation. Thus, both sides equal EX, the usual definition.

2. Take the full σ-algebra G = F . Then

E(X|F) = X.

With this interpretation of conditional expectation that we gave last time,
suppose we do not have access to X and we have to guess the random

104The idea then, satisfying (ii), means that we assign the same number.
105We should pick Aε to be G-measurable. Aε is G-measurable, because Y and Y ′ are G-

measurable.
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variable. Suppose for every outcome of our experiment, we know whether
the outcome belongs to the set G or not. Our guess of the random vari-
able given this information is the conditional expectation. So, if we know
nothing, then our best guess (by the first example) is the expectation. In
the opposite case, if you know everything about the random variable, is to
take this random variable: don’t guess! There are intermediate cases of
course.

3. Discrete σ-algebra. Suppose Ω =
⋃

k Ωk is a partition106 of Ω such that
P(Ωk) > 0. Generate G by these sets: G = σ(Ω1,Ω2, . . .). Then,

E(X|G)(ω) = E(X|Ωk)(ω) for ω ∈ Ωk.

Let’s take the verification of this as an exercise.

The Radon-Nikodym Theorem would not for us construct the random vari-
able Y . We must first guess at Y . A random variable that is constant on the sets
of the σ-algebra, and should take values as suggested by (ii) of the definition.

The conditional expectation is a random variable. In particular, it is a
function. We take a guess at the values of our function, so that it is adaptive
to our information.

Now, we can finally make sense of the condition expectation, even if some
of the sets Ωk (in example 3 above) is zero. In particular, we can now take the
conditional expectation with respect to another random variable.

24.3 Conditional Expectation with respect to another ran-
dom variable

We know what is E(X|Y ∈ [a, b]). We know that this is

1
P(Y ∈ [a, b])

∫

{Y ∈[a,b]}
X dP.

We do not know E(X|Y = y) when P(Y = y) = 0. Yet, the question has a fit
probabilistic interpretation. Thus, we want to understand this. Now, we can
define what is this.

Definition 24.9. E(X|Y ) := E(X|σ(Y )).

Recall that σ(Y ) = {{ω : Y (ω) ∈ B}, B Borel}. The idea is that the
conditional expectation averages out the information. Here, it means that
we want to average out the information about Y . We want to say that the
expectation is the same number for all sets in σ(Y ) occuring. For example,
Y has finitely many values y1, . . . , yn. Then σ(Y ) = σ(Ω1, . . . ,Ωn), where
Ωk = {Y = yk}. So, E(X|Y )(ω) = E(X|Ωk)(ω) for ω ∈ Ωk. In other words,
E(X|Y )(ω) = E(X|Y = yk), for ω ∈ Ωk.

MARCH 5, 2008
106We already discussed the partition Ω = Ω1 ∪ Ω2.
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24.4 Properties of Conditional Expectation

Many of these properties are easy to guess, based on our knowledge of usual
expectation.

Proposition 24.10 (Linearity). E(aX + bY |F) = aE(X|F) + bE(Y |F).

The issue is that the proof is an existential statement. In all these proofs,
you first guess what should be the conditional expectation. So, we propose that
the correct formula for the LHS in the statement is the RHS of the statement:

Proof. We need to check that the RHS is the conditional expectation of aX+bY
given the σ-algebra F . We verify the properties:

(i) RHS is F-measurable: We have a linear combination of two F-measurable
functions.

(ii) For every A ∈ F ,
∫

A
(aE(X|F) + bE(Y |F)) dP = a

∫

A
E(X|F) dP + b

∫

A
E(Y |F) dP by linearity of integration

= a

∫

A
X dP + b

∫

A
Y dP by definition of conditional expectation

=
∫

A
(aX + bY ) dP by linearity.

Corollary 24.11. Conditional expectation is a linear operator on L1(Ω).

We should compare this to the usual expectation, which is a linear func-
tional. The difference is that conditional expectation takes a point in the space
and returns a point in the space, and the expectation returns a number.

Proposition 24.12 (Monotonicity). If X ≤ Y a.s., then E(X|F) ≤ E(Y |F)
a.s.

Again, we don’t have full access to the conditional expectation. We can only
test it using an event A.

Proof. Consider an event A ∈ F . Then
∫

A
E(X|F dP =

∫

A
X dP

≤
∫

Y dP

=
∫

A
E(Y |F) dP

Here, we only proved that one integral is smaller than the other.
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Hence,
∫

A(E(Y |F)−E(X|F)) dP ≥ 0 for every A ∈ F . Therefore, E(Y |F)−
E(X|F) ≥ 0 a.s., and let’s leave that as an exercise (similar to a result in the
previous lecture). Hint: consider Aε := {E(Y |F)− E(X|F) < −ε}.

Corollary 24.13.
∣∣E(X|F)

∣∣ ≤ E(|X|
∣∣ F).

Proof. Note X ≤ |X| and −X ≤ |X|.

We have a conditional dominated convergence theorem:

Theorem 24.14 (Dominated Convergence Theorem). Suppose that random
variables Xn converge to X a.s., and |Xn| ≤ Y a.s., with Y integrable. Then,

E(Xn|F) → E(X|F) a.s.

It’s interesting to note that we don’t lose any power. We still have almost
sure convergence. In the usual version for expectation, we have a statement
about almost sure convergence of numbers, so we lose much. Here, we don’t
lose anything. We’ll prove this.

Proof. We wish to show that a sequence of random variables convergence, so
we must bound their difference.

|E(Xn|F)− E(X|F)| = |E(Xn −X|F)|
≤ E(|Xn −X|

∣∣ F)
≤ E(Zn|F), where Zn = sup

k≥n
|Xk −X| and clearly Zn ↘ .

In fact, Zn ↘ 0 by hypothesis. We want to show that E(Zn|F) ↘ 0 a.s. What
we did here is that we replaced X by 0, essentially.

By monotonicity of the conditional expectations, E(Zn|F) is nonincreasing
a.s. Since it is non-negative, it converges to a limit:

E(Zn|F) ↓ Z a.s.

What if Z is larger than zero? Since Z ≥ 0, EZ = 0 implies Z = 0. So,
it suffices to show that EZ = 0. For normal expectation, we already have a
Dominated Convergence Theorem:

We have 0 ≤ Z ≤ Y + |X| ≤ 2Y .107 Therefore

EZ =
∫

Ω
Z dP

≤
∫

E(Zn|F) dP

= EZn, by definition of conditional expectation.

Since Zn ↓ 0, the Monotone Convergence Theorem yields

EZn → 0.

Hence, EZ = 0.
107When did we use this fact? I leave it as a challenge.
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Proposition 24.15. If X is F-measurable, then

E(XY |F) = X · E(Y |F)

provided XY and X are integrable.

Remark 24.16. We know this for Y = 1. E(X|F) = X. This is more general.
This tells us that we can look at X as a constant when it’s F-measurable.

We know this for F = {∅,Ω} the trivial σ-algebra. Then, the only choice for
X is a constant: X = a. Then, E(aY ) = aEY .

How do we prove this? We do not know the conditional expectation itself,
we only know its properties. We need to check that the RHS in the statement is
the conditional expectation (that is, it satisfies the properties in the definition)
of XY .

Proof. We check that X ·E(Y |F) is the conditional expectation of XY given F .

(i) X · E(Y |F) is F-measurable, because X and E(Y |F) are F-measurable.

(ii) For every A ∈ F , we need to check that
∫

A
X E(Y |F) dP =

∫

A
XY dP. (44)

The proof of this is a bit technical. We follow the technique of Lebesgue
integral, considering first indicators, then linear combinations, then posi-
tive/negative, etc. We sketch the proof:

(a) If X = 1B for B ∈ F , then (44) becomes
∫

A∩B
E(Y |F) dP =

∫

A∩B
Y dP

which is true because A ∩B ∈ F .
(b) If X is a simple random variable, then (44) is true by linearity (of

the integral).
(c) If X ≥ 0, then there exists simple random variables Xn ↑ X a.s. Then

we use (44) for Xn and apply the Monotone Convergence Theorem
to complete the argument and achieve (44) for X.

(d) For arbitrary X, decompose X = X+−X− and use linearity to prove
(44).

This verifies property (ii).

This will be useful when we deal with martingales. The interpretation: We
know X perfectly. We are guessing the variable XY .

MARCH 7, 2008

This is the last lecture on conditional expectation. We will look at a geo-
metric view. We will look at is as a projection
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24.5 Conditional Expectation as a Projection

Here is one theorem that you will not necessarily view in a geometric way, but
it will be useful for martingales.

Proposition 24.17 (Smoothing/Towering). If F1 ⊆ F2, then

1. E(E(X|F1)|F2) = E(X|F1).

2. E(E(X|F2)|F1) = E(X|F1).

Proof. Let F1 ⊆ F2.

1. Y = E(X|F1) is F1-measurable. F1 ⊆ F2 therefore also is F2-measurable.
Hence

E(Y |F2) = Y

by the above example.

2. We want to show that E(X|F1) is the conditional expectation of E(X|F2)
given F1.

(i) Indeed, E(X|F1) is F1-measurable.
(ii) We check for every A ∈ F1, we want to show that

∫

A
E(X|F1) dP =

∫

A
E(X|F2). (45)

The LHS is the integral of X over A. So is the right: since A ∈ F1 ⊆
F2, the definition of conditional expectation shows that both sides
of (45) are equal ∫

A
X dP.

Hence, (i) and (ii) are true.

Corollary 24.18. E(E(X|F)|F) = E(X|F).

Here comes the geometric point of view, which is very useful. We know that
conditional expectation is a linear operator. We also know that if we apply it
twice, it’s the same as applying it once. It satisfies A2 = A. These are the
projections. When you take a point in the image and want to project again,
you’re not doing anything: the image stays fixed. This corollary shows that the
conditional expectation P : X 4→ E(X|F) is a (linear) projection108 in L1(Ω)
onto109 the subspace of all F-measurable random variables.

One proposition that we’ll first put into more of a statistical point of view
and then develop a geometric intuition for is
108that is, P 2 = P .
109Is it clear that it is indeed onto? One can take a random variable that is F-measurable,

P would do nothing.
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Theorem 24.19 (Conditional expectation is the best estimator). For any F-
measurable random variable Y , we have

E(X − E(X|F))2 ≤ E(X − Y )2. (46)

In other words, if you take any other F-measurable random variable, then
it will be worse (in the sense of distance110).

Both sides of (46) show is the mean squared error. So in terms of the mean
squared error, E(X|F) gives us the best (that is, least) error.

In order to prove the theorem, we’ll view it in a geometric way. So, here’s
a geometric interpretation: We want to view the mean square error as a true
distance, as a metric space. We look at the Hilbert space L2(Ω). The norm in
the space of random variables is

‖X‖2 = (EX2)1/2.

Since it is a Hilbert space, the norm is actually given by an inner product, which
is

〈X, Y 〉 = EXY.

This is good. Now, the left and right hand sides of (46) are 2-norms in this
space. Consider

HF := {X ∈ L2(Ω) | X is an F-measurable random variable},

a closed subspace of L2(Ω).
The picture behind the theorem is that E(X|F) is the orthogonal projection.

The theorem says that

‖X − E(X|F)‖2 ≤ ‖X − Y ‖2,

so E(X|F) is the point in HF nearest X.
In other words, because we know that the nearest point to a subspace is

when the error X − E(X|F) is orthogonal, it will follow that

Corollary 24.20. Conditional expectation E( · | F) is the orthogonal projection
in L2(Ω) onto the subspace HF of all F-measurable random variables.

We will prove Theorem 24.19 with this geometric background:

Proof. We will first prove the orthogonality: We prove that the error X −
E(X|F) is orthogonal to HF .

Claim 24.21 (Orthogonality). X−E(X|F) is orthogonal to HF , i.e. for every
Z ∈ HF , we have EZ(X − E(X|F)) = 0.

Proof of claim. Indeed, EZ(X − E(X|F)) = EZX − E(ZE(X|F)). Since Z is
F-measurable, we can put it on the inside on the RHS (since it acts like a
constant). Thus, the expression is = EZX − E(E(ZX|F)). By the smoothing
property (part 2), gives = EZX − EZX = 0.
110Think about variance for the distance. It’s the expectation of the absolute value squared.
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So we proved this geometric claim first, that the error is orthogonal. Now,
with this geometry, we can conclude that the orthogonal amount is the shortest
distance.

Now let Y ∈ HF . We wish to show that E(X−Y )2 ≥ E(X−E(X|F))2. We
will write

E(X − Y )2 = E(X − E(X|F) + Z)2, Z = E(X|F)− Y ∈ HF

= E(X − E(X|F))2 + EZ2 + 2EZ(X − E(X|F))

The second term is non-negative and the third term was shown (in “Orthogo-
nality”) to be zero. Thus

E(X − Y )2 ≥ E(X − E(X|F))2.

This completes the proof.

I guess we just proved Pythagoras’ Theorem. With that geometric interpre-
tation, we may want to go back to the smoothing/towering property and think
of what it means.

In the Towering Proposition, note that HF1 ⊆ HF2 if F1 ⊆ F2. The
geometry of what we’re doing reflects into the [relative] sizes of the spaces.
The smoothing property just tells us these operators commute. That is, if
Pi = E( · | Fi), then P1P2 = P2P1 = P1.

The more information you have, the larger the target projection space, thus
you have a better chance for less error. With the trivial σ-algebra, then the
only random variables are constants, and they form a 1-dimensional subspace.

Do we have enough time for evaluations?

MARCH 10, 2008

25 Martingales

Today we are starting martingales, the last topic of this class. We’ll do as much
as we can. Similar to the case with conditional expectation, we’ll be changing
the σ-algebra. (The integrability that follows is just a technical condition.)

Definition 25.1. Let (Ω,F , P) be a probability space. An increasing sequence
of σ-algebras F1 ⊆ F2 ⊆ · · · ⊆ F is called a filtration.

A sequence (Xn) of random variables on (Ω,F , P) is called a martingale
relative to (Fn) if, for every n, E|Xn| < ∞, and

(i) Xn is Fn-measurable;

(ii) E(Xn+1|Fn) = Xn.

The condition (i) in some other terminology, is that the sequence (Xn) is
adapted to (Fn).

Let’s give one example with which you can temporarily think of martingales,
and then we’ll get to some theorems.
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25.1 A small example

One example is gambling systems. Let Xn be the fortune of a gambler after nth

play. Here, Fn will be thought of some information about the game after nth

play. (So after, the nth play, the gambler has access to just what happened).
Here, condition (i) is just saying that the gambler knows how much money

he/she has at this time (that is, after the nth play).
The second thing: we do not claim that Xn+1 is Fn-measurable. That would

mean that the gambler knows the fortune after the next play, which has not yet
occurred. Statement (ii) says that the gambler knows the expected fortune after
the next play: The expected fortune after next play equals the present fortune.
In other words, this is a fair game.

So, this is our temporary filling for all sorts of useful examples. We’ll get
more.

By the way, how do we interpret a filtration? The information we know
keeps growing.

25.2 Martingale Theory

Definition 25.2. A sequence of random variables (Xn) is called a martingale
if it is a martingale relative to some filtration (Fn).

Remark 25.3. If this is the case, then

Gn = σ(X1, . . . , Xn)

will always work.

That is, if Fn is not known, we can provide a filtration that will always work.

Proof. Gn ⊆ Gn+1 is obvious.

(i) Clearly, Xn is Gn-measurable.

(ii) Note Gn ⊆ Fn. Why? Since Xn is Fn-measurable and Gn is the smallest σ-
algebra that makes X1, . . . , Xn measurable, thus Gn ⊆ Fn. E(Xn+1|Gn) =
E(E(Xn+1|Fn)|Gn), by towering. But this is E(Xn|Gn) by definition of
martingale. And finally, this is Xn, since Xn is Gn-measurable.

Thus, Gn is the smallest filtration for Xn.

In this case, (ii) can be rewritten111 as,

E(Xn+1|X1, . . . , Xn) = Xn.

Here, the gambler (from the example in Section 25.1) only knows his/her for-
tune after first n plays, and nothing else about the game. This is the minimal
information in gambling112.
111Recall that E(X|σ(Y )) is the definition of E(X|Y ).
112We should at least suppose the gambler knows how much money he/she has!
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Sometimes it is useful to replace the unknown filtration by a concrete one.
However, this may not be quite possible. Sometimes, there might be other
information about the game that can’t be observed, for example, the fortunes
of the other players of the game.

An immediate exercise here is to show

Proposition 25.4. Suppose (Xn) is a martingale.

1. E(Xn+k|Fn) = Xn for all k = 1, 2, . . ..

2. EX1 = EX2 = · · · .
Proof. A sketch of ideas:

1. Just apply our trick repeatedly.

2. This average property follows from condition (ii).

25.2.1 Martingale Differences

One useful way to look at martingales is through martingale differences.

Definition 25.5. Let (Xn) be a martingale relative to the filtration (Fn). Define
differences

∆1 = X1, ∆2 = X2 −X1, ∆3 = X3 −X2, . . .

In terms of the gambler, this will be the gain/loss at nth play (the change
in fortune).

Then (ii) is equivalent to113

E(∆n+1|Fn) = 0,

that is, the expected gains/losses at each play is zero.
Then, Xn = ∆1 + ∆2 + · · ·+ ∆n. Hence (∆n) determine (Xn) uniquely, so

σ(X1, . . . , Xn) = σ(∆1, . . . ,∆n).

Thus, this would be an equivalent way (by specifying the ∆’s) to define a
martingale.

25.3 A second example

Here comes a second example: sums of independent random variables. Let
(∆n) be independent integrable mean zero random variables. Then, they are
martingale differences for some martingale: Specifically,

Xn = ∆1 + · · ·+ ∆n

is a martingale114.
Indeed, using Gn = σ(X1, . . . , Xn), we have that

113since Xn is already Fn-measurable, so we can push it into the expectation
114and of course, the ∆n are the martingale differences.
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(i) Xn is obviously Gn-measurable

(ii) E(Xn+1|X1, . . . , Xn) = E((
∑n

k=1 ∆k) + ∆n+1|∆1, . . . ,∆n)

Part (ii)’s “given” follows since the σ-algebras are the some. Thus, on the RHS,
just the linearity gives E(

∑n
k=1 ∆n|∆1, . . . ,∆n)+E(∆n+1|∆1, . . . ,∆n). So, this

would be
∑n

k=1 ∆k + 0, by the independence.
So, this game has no memory (of what happened in the past). This is the

simplest type of game. In other situations, ∆n might be information of the
past. So, this shows how martingales are generalization of independent random
variables. If you know Markov chains a bit, then in a Markov chain, it depends
only on the most recent iteration. In a Martingale, even this might not be true.
So here, the information only depends on the result, the fortune, of the player.
In a Markov chain, there is a dependence on the outcome of the previous play,
not just the fortune.

So this is a very illuminating example.

25.4 A third example

This is also very general. A martingale can also be defined in this way. Let
X be a random variable on (Ω,F , P), and let Fn be a filtration in F . We will
create a martingale out of a single random variable:

For each n, define
Xn = E(X|Fn),

the nth random variable in the sequence (Xn). Then, (Xn) is a martingale
relative to Fn.

Proof. (i) Xn is Fn-measurable.

(ii) E(Xn+1|Fn) = E(E(X|Fn+1)|Fn) = E(X|Fn) = Xn.

So, we have a martingale, obtained just from a single random variable and
a filtration, by averaging. We interpret X as being all knowledge (ultimate
knowledge) about the gambler’s fortune at all points in time (the gambler’s
fortune at time ∞). X(ω) is the knowledge for outcome ω. It’s the best guess
about the random variable X (without the specified outcome ω).

MARCH 12, 2008

Monday (March 17th) class is cancelled. So, we are going through the theory
of martingales.

Definition 25.6. (Xn) is called a supermartingale if condition (ii) in the defi-
nition of martingale is replaced by E(Xn+1|Fn) ≤ Xn.

Similarly, (Xn) is called a submartingale if condition (ii) in the definition
of martingale is replaced by E(Xn+1|Fn) ≥ Xn.
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I realize it seems strange that super comes with ≤ and sub comes with ≥.
Durrett talks about this.

The interpretation of this, in terms of gambling:

1. A supermartingale is a gambler’s profit in an unfavorable game.

2. A submartingale is a gambler’s profit in a favorable game.

A canonical example for supermartingales: partial sums of independent ran-
dom variables with negative means. Independent random variables with positive
means form submartingales.

They are related to each other: There is a dual theory of submartingales
and supermartingales.

Remark 25.7. (Xn) is a supermartingale iff (−Xn) is a submartingale.

A more general source of submartingales is through a convex function:

Proposition 25.8. Let (Xn) be a martingale and ϕ be a convex function s.t.
E|ϕ(Xn)| < ∞ for every n. Then (ϕ(Xn)) is a submartingale.

Proof.

E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn))
= ϕ(Xn)

by a conditional version of Jensen’s Inequality.

Of course, if you take a concave function, you get a supermartingale. It’s a
pretty general way to construct submartingales out of martingales.

Now, we’re going into gambling strategies. Actually, we’re going into theory
of martingales.

25.5 Strategies

So far, only the game dictates the rule. We want now to have the gambler to
be able to bet. The definition related to this betting is

Definition 25.9. A sequence of random variables (Hn) is called predictable
(with respect to a filtration (Fn)) if Hn is Fn−1-measurable.

We want to predict Hn with certainty after the previous game. So, after the
n − 1 game, we are able to determine Hn. That is, Hn can be predicted with
certainty from the information available at time n− 1.

Example 25.10. We will think of Hn ≥ 0 as the amount of money the gambler
bets at time n.
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The gambler bets with certainty on the nth game, but the outcome of the
nth game is not yet known. In the case of the example, (Hn) is the gambler
strategy. The strategy can even be defined ahead of time: The gambler can
decide what to do in all cases ahead of time. Of course, the major question is
what is the optimal strategy115.

The simplest strategy is to bet 1 dollar at a time. Don’t think: just bet
1 every game. Namely,

Let Xn be the net amount of money the gambler wins at
time n, using the simplest strategy.

}
(47)

Thus, suppose (47) is what is known. For an arbitrary strategy (Hn), the net
amount of money the gambler wins at time n is

(H ·X)n :=
n∑

k=1

Hk(Xk −Xk−1)

This is the gambler’s profit with arbitrary strategy.
The result, the pessimistic result, is that no strategy can beat an unfavorable

game116, that is, a supermartingale.

Theorem 25.11. Let (Xn) be a supermartingale. Let (Hn) be a predictable
sequence, and suppose each Hn ≥ 0 is bounded. Then (H · X)n is a super-
martingale.

If we keep track of how we’re doing in this game, each time we’re getting
worse and worse and worse.

Proof.

E((H · X)n+1|Fn) = E((H · X)n + Hn+1(Xn+1 −Xn)|Fn)

= (H · X)n + Hn+1E(Xn+1 −Xn|Fn), since (H · X)n and Hn+1 are Fn-measurable

≤ (H · X)n, since Hn+1 ≥ 0 and Xn a supermartingale

So, this is pessimistic, but what about if we pick a stopping time?

25.6 Stopping times

Definition 25.12. A random variable N ∈ N is a stopping time if the event
{N = n} ∈ Fn for every n.

We are able to decide whether we are going to stop or not right after the
nth game. Our decision to stop right after the nth game depends only on the
information about n games. (We can not mentally play more games, and decide
to have stopped earlier.)
115I must warn you, the results are pessimistic.
116So there is no strategy, actually.
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If we also throw in the possibility of stopping at any time, then the theorem
is the same pessimistic result. Even then we can’t win. No stopping time can
beat an unfavorable game. First, define: Let N ∧ n denote the minimum of the
two.

Corollary 25.13. Let N be a stopping time, and (Xn) be a supermartingale.
Then (XN∧n) is a supermartingale.

We interpret this as our sequence Yn = XN∧n freezes at some point, namely,
it looks like

X1, X2, X3, . . . , XN , XN , XN , . . . .

Proof. Let Hn := 1{N≥n}. That is, will play the nth game. Obviously, Hn is
Fn−1-measurable because {N ≥ n} = {N ≤ n− 1}c ∈ Fn−1.

Then, by the theorem above, (H ·X)n is a supermartingale. (If we stop at
N , we have a telescoping series, and all that is left is the biggest term. We’re
left with XN∧n−X0.) The constant X0 also forms a supermartingale (a trivial
supermartingale). Thus

XN∧n = (H ·X)n + X0,

the sum of two supermartingales is a supermartingale. So XN∧n is a super-
martingale.

No optimal startegy, no optimal stopping time. Now, a paradox.

25.7 The Martingale Paradox

We’re going to describe a simple winning strategy. It’s very old. This describes
the etymology of the word. This describes a fake belt. Another theory is
something that can hold a horse from running too fast. A martingale has this
sort of chain property.

Here’s the strategy: Double the bet if we loose, at every game. So, enter
with one dollar. Suppose, for simplicity, I lose or win with probability 1

2 . If I
win, they’ll give me the amount of my bet. If I lose, I lose my bet. I enter with
one dollar. If I lose, I bet two. If I lose the two, I bet four dollars. Next time
I lose, I bet eight dollars. Suppose I’m rich enough. Every time I lose, I’ll bet
double. And once I win, I’ll quit when I win.

What is our profit? If we loose k times and win the next time, we compute:

−1− 2− 22 − · · · − 2k + 2k+1 = 1 > 0.

Of course, I if quadruple each time, I can win more. This seems to be in
contradiction with the theory. I encourage you to think about this paradox.
It’s actually ruined so many people in the casinos. See movie Los Alamos (sp?).

MARCH 14, 2008
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Today’s our last class. There is no class on Monday. The final exam is
posted. Please do not be late on turning in the final exam. I will collect it
precisely at noon. Please turn it into my mailbox. If some typo is discovered,
I will put a note in red. If you have any difficulty, you may wish to check for
notes in red.

25.8 Two results of Doob

Today, we cover two classical results due to Doob. One of them is the Upcrossing
Inequality. We were talking about gambling, for a bit. Now, we’ll look at stock
prices.

25.8.1 The Upcrossing Inequality

Let (Xn) be stock prices at time n. What is the simplest strategy in the market?
Buy low and sell high. The broker’s strategy, which we are examining here, is
precisely this.

We will assume that the market is favorable. That is, assume (Xn) is a
submartingale. We expect the broker to earn money in the long run. We
analyze this strategy. We buy at one [lower] level, and sell at a higher level.
The broker buys at level a and sells at level b.

The period of time when the broker holds onto a share is called an upcrossing.

Definition 25.14. A sequence (Xk, Xk+1, . . . , Xm) is an upcrossing if

Xk ≤ a ≤ Xk+1 ≤ Xk+2 ≤ · · · ≤ Xm−1 ≤ b ≤ Xm.

In the definition, this does not quite perfectly reflect our notion, because the
upcrossing only concerns the price growth of the share within [a, b].

Here is the Broker’s Strategy: When the price plunges below a first time,
buy a share. Hold onto it until the price jumps above b first time; repeat.
During every upcrossing, the broker earns at least b− a dollars per share. Now,
the biggest question is: how many crossings Un are there during time n (that
is, from 1 to n). Then, our profit guarantee is at least (b− a)n.

Another paradoxical result is

Theorem 25.15 (Upcrossing Inequality). Let (Xn) be a submartingale, and
Un be the number of upcrossings from a to b in time n. Then,

EUn ≤
E(Xn −X0)

b− a
.

This is another pessimistic result. What does it say? If we multiply by b−a,
we obtain

E[(b− a)U ] ≤ E[Xn −X0].

The LHS is the profit while using the strategy “buy low, sell high.” What is the
RHS? X0 is the price to buy at the beginning. Xn is the price to sell at time
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n. So, the RHS is the profit using the ignorant strategy “sit and wait,” where
we sell after time n regardless of Xn. I’ll leave for you as a challenge to think
of how this is possible.

Proof. We realize the broker’s strategy “buy low, sell high” as a predictable
sequence. After time k, what the broker is doing is

Hk :=
{

1 if broker holds a share
0 otherwise

Then, what is the profit?

Profit = (H ·X)n =
n∑

k=1

Hk(Xk −Xk−1).

When the H is 1, then the RHS above is a telescoping sum, which just gives
Xlast −Xfirst.

We know that the profit is bounded below:

(H ·X)n ≥ (b− a)Un. (48)

Now, we use the theorem that this is a supermartingale. We will look at the
empty spaces, where we do not hold a share. Define

Hk = 1−Hk,

which indicates the times we do not hold a share.
Easily, we have

(H ·X)n + (H ·X)n = (1 ·X)n (49)

The first term in the LHS is the profit in “buy low, sell high.” The RHS is the
profit in “sit and wait”. We need to analyze the difference, given by (H ·X)n.

(Xn) is a submartingale, and (Hn) is predictable. By the dual formulation
of Theorem 25.11, (H ·X)n is a submartingale.

Thus, E(H · X)n ≥ E(H · X)0 = 0. We apply expectation to (49) and use
the above to obtain

E(H ·X)n ≤ E(Xn −X0).

Together with (48), this completes the proof.

The martingale is either bounded in the end, or it’s not. If it’s unbounded,
then it will not respect the midpoint of [a, b]. Then, the number of crossings
will be small.

So, all these gambling and stock prices have remarkable theorems, which
complete the course.
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25.8.2 The Martingale Convergence Theorem

It’s one of the rare consequences of taking a really applied problem and apply
it to a pure problem.

Let’s give a simple formulation of it.

Theorem 25.16 (Martingale Convergence Theorem). Let (Xn) be a submartin-
gale and supn E|Xn| < ∞. Then Xn → X a.s. for some random variable X
with E|X| < ∞.

The proof is a simple application of the Upcrossing Inequality. What can go
wrong, if Xn does not converge? Then Xn oscillates. The number of upcrossings
will be infinite. But this can not be, because the RHS of the previous theorem
(by hypothesis) would be finite, so this is impossible. Here is the formal proof.

Proof. Let K be the level that bounds all the expectations. That is E|Xn| ≤ K
for all n. So the Upcrossing Inequality (with the triangle inequality) implies

EUn ≤
E|Xn|+ E|X0|

b− a

for all a, b.
We know that E|Xn| ≤ K. If (Xn) is a submartingale, then (|Xn|) is as

submartingale (since x 4→ |x| is a convex function). Thus E|X0| ≤ E|Xn| ≤ K.
Therefore

EUn ≤
2K

b− a
.

We need something that works for infintely many Uns. What can we say about
the total number of upcrossings supn Un? Un is integrable and monotone in-
creasing. So supn Un is integrable by the Monotone Convergence Theorem.

In particular, an integrable function is finite almost everywhere. That is,

supUn < ∞ a.s.

The number of upcrossings (in such a market) will be finite. So, how can
the conclusion be false? That is, how can Xn not converge to anything? We
consider

X∗ = lim inf Xn X∗ = lim supXn.

The crucial observation is that if X∗ < a < b < X∗, then this sequence must
go between the two infinitely many times. If this is true, then the number of
upcrossings must be infinite, and this does not happen. Hence,

P(X∗ < a < b < X∗) = 0

for every a < b. Now, we can tighten a and b together. We can represent the
event

{X∗ < X∗} =
⋃
{X∗ < a < b < X∗},
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where the union is over all a, b ∈ Q, a < b (for countability). Every event in the
union on the RHS has measure zero. It follows that

P(X∗ < X∗) = 0.

This, it must be the case that Xn → X for some random variable.
Let’s leave E|X| < ∞ as an exercise.

This is an application to pure subject matter from an applied topic.
This is remarkable.

Corollary 25.17. For every non-negative martingale (Xn), Xn → X a.s. to
some random variable X with E|X| < ∞.

We haven’t even said anything about integrability of Xns.

Proof. If (Xn) is non-negative, then E|Xn| = EXn. But since this is a martin-
gale, this is EX0, which is finite. Thus, the condition of the previous theorem
is satisfied.

It’s very surprising is that we’ve done almost nothing, and we’ve created
this random variable to which it converges almost surely. Level 0 is a strong
boundedness property.

The theorem “almost” shows that (Xn) can be obtained from a single random
variable X by taking expectations. Recall that Xn = E(X|Fn) is always a
martingale. In the theorem, we already have a candidate for X.

This is not quite true. Why? The simplest example is a random walk. The
floor is level zero. If I hit the floor, I stay there. The expectation of every
increment is finite. So, at some point (almost surely), I will hit the floor. And
of course, from zero, you can not recover the martingale.

This completes our year, and I wish to you the best.

[These notes are typeset by Edward D. Kim in “real time” during the lecture/class/talk. In particular, no time is

spent in correcting/fixing typographical or mathematical errors after any session(s). By making these notes

public, I am accepting no responsibility for their accuracy. You accept all liability/consquences from the use of

these notes.]
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