Homework 09/11

Functional Analysis (602, Real Analysis II), Fall 2009

- **1.** Let E and F be linear spaces, and E_1 be a subspace of E. Prove that every linear operator $T_1: E_1 \to F$ can be extended to a linear operator $T: E \to F$ (i.e. the two operators must act identically on $E_1: T_1x = Tx$ for all $x \in E_1$).
- **2.** (Injectivization) Consider a linear operator $T: E \to F$ acting between linear spaces E and F. The operator T may not be injective; we would like to make it into an injective operator. To this end, we consider the map $\tilde{T}: X/\ker T \to Y$ which sends every coset [x] into a vector Tx, i.e. $\tilde{T}[x] = Tx$.
- (i) Prove that \tilde{T} is well defined, i.e. $[x_1] = [x_2]$ implies $Tx_1 = Tx_2$.
- (ii) Check that \tilde{T} is a linear and injective operator.
- (iii) Show that $T = \tilde{T} \circ q$, where $q: X \to X/\ker T$ is the quotient map. In other words, every linear operator can be represented as a composition of a surjective and injective operator.
- **3.** Show that the convergence in the space C[a,b] is the uniform convergence on [a,b].
- **4.** Suppose a sequence (x_n) of vectors in a normed space converges to a vector x. Show that $||x_n|| \to ||x||$ as $n \to \infty$.
- **5.** Consider the linear space \hat{c} of double sequences $x = (x_n)_{n=-\infty}^{\infty}$ such that the limits $b_+ = \lim_{n \to \infty} x_n$ and $b_- = \lim_{n \to -\infty} x_n$ exist. Consider the subspace \hat{c}_0 of the sequences for which $b_+ = b_- = 0$. Compute the codimension of \hat{c}_0 .
- **6.** Prove that c_0 is a closed subspace of ℓ_{∞} .