1. Prove that ℓ_∞ is a Banach space.

2. Let X be a Banach space and Y be a closed subspace of X. Prove that the quotient space X/Y is a Banach space.

3. (Minkowski functional) Consider a closed, convex, origin-symmetric set K in \mathbb{R}^n with nonempty interior. Minkowski functional of K is the function defined on \mathbb{R}^n by

$$\|x\|_K := \inf \{ t > 0 : x/t \in K \}.$$

Show that $\| \cdot \|_K$ is a norm on \mathbb{R}^n, and the unit ball of this normed space is K.

4. (ℓ_∞ is the limit of ℓ_p) Show that for every $x \in \mathbb{R}^n$ one has

$$\|x\|_p \to \|x\|_\infty \quad \text{as} \quad p \to \infty.$$

5. (C^k spaces) Let $k \in \mathbb{N}$. Consider the space $C^k[0,1]$ which consists of the real-valued functions f defined on $[0,1]$ that have derivatives up to the k-th order, and with the norm

$$\|f\| := \max(\|f\|_\infty, \|f'\|_\infty, \|f''\|_\infty, \ldots, \|f^{(k)}\|_\infty).$$

Prove that $C^k[0,1]$ is a Banach space.

6. Let (x_n) be a Cauchy sequence in a normed space X. Prove that:

(i) If some subsequence of (x_n) converges to a vector $x \in X$ then the whole sequence (x_n) converges to x.

(ii) There exists a subsequence $(y_k) \subseteq (x_n)$ such that

$$\|y_{k+1} - y_k\| \leq 2^{-k}, \quad k = 1, 2, \ldots$$