Homework 09/18

Functional Analysis (602, Real Analysis II), Fall 2009

1. Prove that ℓ_{∞} is a Banach space.

2. Let X be a Banach space and Y be a closed subspace of X. Prove that the quotient space X/Y is a Banach space.

3. (Minkowski functional) Consider a closed, convex, origin-symmetric set K in \mathbb{R}^n with nonempty interior. Minkowski functional of K is the function defined on \mathbb{R}^n by

$$||x||_K := \inf \{t > 0 : x/t \in K\}.$$

Show that $\|\cdot\|_{K}$ is a norm on \mathbb{R}^{n} , and the unit ball of this normed space is K.

4. $(\ell_{\infty} \text{ is the limit of } \ell_p)$ Show that for every $x \in \mathbb{R}^n$ one has

$$||x||_p \to ||x||_\infty \text{ as } p \to \infty.$$

5. (C^k spaces) Let $k \in \mathbb{N}$. Consider the space $C^k[0,1]$ which consists of the real-valued functions f defined on [0,1] that have derivatives up to the k-th order, and with the norm

 $||f|| := \max(||f||_{\infty}, ||f'||_{\infty}, ||f''||_{\infty}, \dots, ||f^{(k)}||_{\infty}).$

Prove that $C^k[0,1]$ is a Banach space.

6. Let (x_n) be a Cauchy sequence in a normed space X. Prove that:

(i) If some subsequence of (x_n) converges to a vector $x \in X$ then the whole sequence (x_n) converges to x.

(ii) There exists a subsequence $(y_k) \subseteq (x_n)$ such that

$$||y_{k+1} - y_k|| \le 2^{-k}, \quad k = 1, 2, \dots$$