Homework 09/18

Functional Analysis (602, Real Analysis II), Fall 2009

1. Prove that C[0,1] is not dense in $L_{\infty}[0,1]$.

2. Prove that the inner product is a continuous function on the Cartesian product $X \times X$ of a Hilbert space X.

3. (Parallelogram law) (i) Prove that, in every inner product space X, the following identity (parallelogram law) holds:

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 for all $x, y \in X$.

(ii) Prove that the parallelogram law characterizes inner product spaces. Namely, suppose that the parallelogram law holds. Then one can define an inner product $\langle \cdot, \cdot \rangle$ on X in such a way that $||x|| = \langle x, x \rangle^{1/2}$ for all $x \in X$.

Hint: consider spaces over \mathbb{R} *only; define the inner product via the polarization identity* $\langle x, y \rangle = \frac{1}{4} (||x + y||^2 - ||x - y||^2).$

(iii) Check that the parallelogram law does not hold in spaces C[0, 1], $L_1[0, 1]$ and c_0 .

4. (Hilbert space of matrices) Consider the linear space $M_{n,m}$ of all $m \times n$ matrices with complex entries. Show that the formula

$$\langle A, B \rangle := \operatorname{trace}(A^*B)$$

defines an inner product on $M_{m,n}$. Write out the corresponding norm ||A|| in terms of the matrix entries. What does Cauchy-Schwartz inequality look in this $M_{n,m}$?

5. (Projections onto closed sets) - may be difficult. Let X be a Hilbert space and $A \subseteq X$ be a closed, convex and nonempty set. The closest vector in A to a vector $x \in X$ is denoted by $P_A x$ and called the projection of x onto A. Recall that by the general form of theorem we proved in class (p. 32 in the notes), $P_A x$ exists and is unique. Prove that the map $P_A : X \to X$ is non-expansive and hence continuous, i.e.

$$||P_A x - P_A y|| \le ||x - y|| \quad \text{for all } x, y \in X.$$