Homework 10/09
Functional Analysis (602, Real Analysis II), Fall 2009

1. (i) Prove the identity
\[\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \]
by expanding the function \(f(t) = t^2 \) in Fourier series in \(L_2[-\pi, \pi] \) and using Parseval’s identity.
 (ii) In a similar way, compute \(\sum_{k=1}^{\infty} \frac{1}{k^4} \).

2. Prove that the system of functions \(\sin nt, n = 1, 2, \ldots \) is an orthogonal basis of \(L_2[0, \pi] \).

3. Consider the linear functional on \(C[0, 1] \) given by
 \[F(f) = \int_0^1 f(t)g(t) \, dt, \quad f \in C[0, 1] \]
where \(g \) is a fixed function.
 (i) Describe the functions \(g \) for which \(F \) is a bounded linear functional;
 (ii) compute the norm of \(F \) in these cases;
 (iii) show by example that \(F \) may not attain its norm.

4. Consider the linear functional on \(c_0 \) given by
 \[f(x) = \sum_{n=1}^{\infty} \frac{x_n}{2^{n-1}}, \quad x = (x_1, x_2, \ldots) \in c_0. \]
 (i) Show that \(f \in c_0^* \) and compute the norm of \(f \).
 (ii) Show that \(f \) does not attain its norm.

5. (Duality between subspaces and quotient spaces) The annihilator of a subset \(E \) of a normed space \(X \) is the subspace of \(X^* \) defined as
 \[E^\perp = \{ f \in X^* : f(x) = 0 \text{ for all } x \in E \}. \]
Let \(Y \) be a closed subspace of a normed space \(X \). Show that, under natural identifications (what are they?) one has:
 (i) \((X/Y)^* = Y^\perp \) (hence the dual of a quotient space is a subspace);
 (ii) \(Y^* = X^*/Y^\perp \) (hence the dual of a subspace is a quotient space).