Homework 10/09
Functional Analysis (602, Real Analysis II), Fall 2009

1. (i) Prove the identity

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

by expanding the function $f(t)=t^{2}$ in Fourier series in $L_{2}[-\pi, \pi]$ and using Parseval's identity.
(ii) In a similar way, compute $\sum_{k=1}^{\infty} 1 / k^{4}$.
2. Prove that the system of functions $\sin n t, n=1,2, \ldots$ is an orthogonal basis of $L_{2}[0, \pi]$.
3. Consider the linear functional on $C[0,1]$ given by

$$
F(f)=\int_{0}^{1} f(t) g(t) d t, \quad f \in C[0,1]
$$

where g is a fixed function.
(i) Describe the functions g for which F is a bounded linear functional;
(ii) compute the norm of F in these cases;
(iii) show by example that F may not attain its norm.
4. Consider the linear functional on c_{0} given by

$$
f(x)=\sum_{n=1}^{\infty} x_{n} / 2^{n-1}, \quad x=\left(x_{1}, x_{2}, \ldots\right) \in c_{0} .
$$

(i) Show that $f \in c_{0}^{*}$ and compute the norm of f.
(ii) Show that f foes not attain its norm.
5. (Duality between subspaces and quotient spaces) The annihilator of a subset E of a normed space X is the subspace of X^{*} defined as

$$
E^{\perp}=\left\{f \in X^{*}: f(x)=0 \text { for all } x \in E\right\}
$$

Let Y be a closed subspace of a normed space X. Show that, under natural identifications (what are they?) one has:
(i) $(X / Y)^{*}=Y^{\perp}$ (hence the dual of a quotient space is a subspace);
(ii) $Y^{*}=X^{*} / Y^{\perp}$ (hence the dual of a subspace is a quotient space).

