Homework 10/16

Functional Analysis (602, Real Analysis II), Fall 2009

1. Geometric form of Hahn-Banach Theorem. Based on the separation theorem for a set and a point (proved in Lecture 15), prove the following geometric form of Hahn-Banach theorem. Let A, B be disjoint convex subsets of a normed space X, and assume that A is open. Then there exists $f \in X^*$ and $C \in \mathbb{R}$ such that

$$f(a) < C \le f(b)$$
 for all $a \in A, b \in B$.

(Hint: consider the set $K = A - B := \{a - b : a \in A, b \in B\}$ and use that $0 \notin K$.

2. Limitations of Hahn-Banach Theorem. Here you will construct two convex disjoint sets which can not be separated. This will show that the assumption in Problem 1 that one of the sets is open can not be dropped.

Consider the linear space \mathcal{P} of all polynomials in one variable and with real coefficients. Let the subset A consist of polynomials with negative leading coefficient, and let the subset B consists of polynomials with all nonnegative coefficients. Show that A and B are disjoint convex subsets of \mathcal{P} , and that there does **not** exist a nonzero linear functional f on \mathcal{P} such that

$$f(a) \le f(b)$$
 for all $a \in A, b \in B$.

3. Integral operators. (i) Show that the integral operator T on $L_2[0,1]$,

$$(Tf)(t) = \int_0^1 k(t,s)f(s) \, ds$$

has norm $||T|| = ||k||_2$ (the upper bound was proved in Lecture 16).

(ii) Compute the norm of the integral operator on C[0, 1], assuming that the kernel $k \in C([0, 1]^2)$.

4. Invertibility. Suppose $T \in L(X, X)$ and ||T|| < 1. Prove that $\mathrm{Id} - T$ is invertible, $(\mathrm{Id} - T)^{-1} \in L(X, X)$ and

$$(\mathrm{Id} - T)^{-1} = I + T + T^2 + T^3 + \cdots$$