Homework 11/06

Functional Analysis (602, Real Analysis II), Fall 2009

1. (i) Prove the following strengthening of Mazur's lemma. Let x_n be a sequence in a Banach space X which converges weakly to $x \in X$. Then

$$\{x\} = \bigcap_{n \ge 1} \overline{\operatorname{conv}(x_i)_{i \ge n}}$$

- (ii) Consider the sequence $x_n = (1, \ldots, 1, 0, 0, \ldots)$ (with n ones and rest zeros) in ℓ_{∞} . Use Mazur's lemma to show that x_n does not weakly converge. Deduce that the criterion of weak convergence in spaces ℓ_p $(1 and <math>c_0$ (i.e. boundedness and pointwise convergence) does not hold for ℓ_{∞} .
- **2.** Prove that the uniform measures on the intervals $[x_0 \frac{1}{n}, x_0 + \frac{1}{n}]$ weakly (i.e. weak*) converge to the Dirac delta function δ_{x_0} .
- **3.** Let K be a w-compact set in a Banach space X, and let $F: K \to \mathbb{R}$ be a convex and continuous function. Show that

$$\sup_{x \in K} f(x) = \sup_{x \in \text{ext}(K)} f(x).$$

- **4.** Prove that:
 - (i) $\operatorname{ext}(B_{c_0}) = \emptyset;$
 - (ii) $\operatorname{ext}(B_{C[0,1]}) = \{-1, 1\};$
 - (iii) $ext(B_{L_1[0,1]}) = \emptyset;$
- (iv) for K being the unit ball of the operator space $L(\ell_2^n, \ell_2^n)$, the extremal points of K are precisely the unitary operators.