Homework 11/13

Functional Analysis (602, Real Analysis II), Fall 2009

1. (Duality) Let X be a Banach space. Prove that every operator $A \in L(X, X)$ satisfies:

(i) $(\text{Im } A)^{\perp} = \ker A^*;$

(ii) $(\ker A)^{\perp} = \operatorname{Im} A^*$. Deduce that $\ker A = (\operatorname{Im} A^*)_{\perp}$.

2. (Fredholm's alternative) Prove the necessity direction in Fredholm's theorem that w have not proved in class. Namely, let T be a compact linear operator T on a Banach space X. Prove that if T-I is surjective then T-I is injective. (Hint: use the sufficiency direction in Fredholm's theorem and the duality relations from the previous exercise.)

3. (Classifying the spectrum) Compute and classify the spectrum of the following linear operators.

(i) Multiplication operator T acting on ℓ_2 as

$$T((x_i)_{i=1}^{\infty}) = (\lambda_i x_i)_{i=1}^{\infty}$$

where λ_i is a bounded sequence of complex numbers;

(ii) Multiplication operator T acting on $L_2[0, 1]$ as

$$(Tx)(t) = g(t)x(t)$$

where $g(t) : [0,1] \to \mathbb{C}$ is a piecewise-continuous function (i.e. a function with finitely many points of discontinuity).

4. (Spectrum of the adjoint operator) Let $T \in L(X, X)$. Prove that $\sigma(T^*) = \overline{\sigma(T)}$. Here the bar stands for complex conjugation, not for closure.

5. (Point spectrum and residual spectrum)

(i) Prove that if $\lambda \in \sigma_p(T)$ and $\lambda \notin \sigma_p(T^*)$ then $\lambda \in \sigma_r(T^*)$. (Hint: use the duality relations from Exercise 1 for the operator $T - \lambda I$.)

(ii) Prove that

$$\sigma_r(T) \subseteq \sigma_p(T^*) \subseteq \sigma_r(T) \cup \sigma_p(T).$$

Deduce that if X is reflexive, then $\sigma_r(T^*) \subset \sigma_p(T)$. Deduce that self-adjoint bounded linear operators in Hilbert space do not have residual spectrum.