1. **(Duality)** Let X be a Banach space. Prove that every operator $A \in L(X, X)$ satisfies:
 (i) $(\text{Im} A)^\perp = \ker A^*$;
 (ii) $(\ker A)^\perp = \text{Im} A^*$. Deduce that $\ker A = (\text{Im} A^*)_\perp$.

2. **(Fredholm’s alternative)** Prove the necessity direction in Fredholm’s theorem that we have not proved in class. Namely, let T be a compact linear operator T on a Banach space X. Prove that if $T - I$ is surjective then $T - I$ is injective. *(Hint: use the sufficiency direction in Fredholm’s theorem and the duality relations from the previous exercise.)*

3. **(Classifying the spectrum)** Compute and classify the spectrum of the following linear operators.
 (i) Multiplication operator T acting on ℓ_2 as

 $T((x_i)_{i=1}^\infty) = (\lambda_i x_i)_{i=1}^\infty$

 where λ_i is a bounded sequence of complex numbers;
 (ii) Multiplication operator T acting on $L_2[0, 1]$ as

 $(Tx)(t) = g(t)x(t)$

 where $g(t) : [0, 1] \to \mathbb{C}$ is a piecewise-continuous function (i.e. a function with finitely many points of discontinuity).

4. **(Spectrum of the adjoint operator)** Let $T \in L(X, X)$. Prove that $\sigma(T^*) = \overline{\sigma(T)}$. Here the bar stands for complex conjugation, not for closure.

5. **(Point spectrum and residual spectrum)**
 (i) Prove that if $\lambda \in \sigma_p(T)$ and $\lambda \notin \sigma_p(T^*)$ then $\lambda \in \sigma_r(T^*)$. *(Hint: use the duality relations from Exercise 1 for the operator $T - \lambda I$.)
 (ii) Prove that

 $\sigma_r(T) \subseteq \sigma_p(T^*) \subseteq \sigma_r(T) \cup \sigma_p(T)$.

 Deduce that if X is reflexive, then $\sigma_r(T^*) \subset \sigma_p(T)$. Deduce that self-adjoint bounded linear operators in Hilbert space do not have residual spectrum.