Homework 11/20

Functional Analysis (602, Real Analysis II), Fall 2009

1. Consider the multiplication operator T on ℓ_2 given by

$$T((x_i)_{i=1}^{\infty}) = (\lambda_i x_i)_{i=1}^{\infty}$$

where (λ_i) is a bounded sequence of complex numbers. Classify the sequences (λ_i) for which T is a compact operator.

- **2.** Let X be a Banach space, and let $S, T \in L(X, X)$. Prove that the operator ST is invertible (i.e. is an isomorphism) if and only if both S and T are invertible. (We used this fact in the proof of the spectral radius theorem in Lecture 30).
- 3. (Orthogonal projections) Let P be an orthogonal projection in a Hilbert space (on some proper subspace). Prove that P is a self-adjoint operator. Compute and classify its spectrum.
- **4.** (Spectral radius of selfadjoint operators) Let $T \in L(H, H)$ be a self-adjoint operator on a Hilbert space H.
 - (a) Prove that

$$||T^2|| = ||T||^2.$$

(Hint: use Theorem on p.131).

(b) Using part (a), prove that the spectral radius of T satisfies

$$r(T) = \|T\|.$$

5. (Inversion of perturbations) Let X be a Banach space. Show that the invertible operators (i.e. isomorphisms) on X form an open set in the operator space L(X,X), and the inversion map $T\mapsto T^{-1}$ is continuous on this set.

Specifically, prove that if $S \in L(X,X)$ is invertible, then every $T \in L(X,X)$ such that $||T-S|| \leq 1/||S^{-1}||$ is invertible, too. (Hint: use von Neumann's inversion lemma from Lecture 29).