Definition and examples. Norm.

Def. Let E be a linear space. A linear operator $f : E \rightarrow \mathbb{R}$ (or \mathbb{C}) are called linear functionals on E. Equivalently, a function $f : E \rightarrow \mathbb{R}$ (or \mathbb{C}) is a linear functional if
\[f(ax + by) = af(x) + bf(y) \quad \text{for all } x, y \in E; \quad a, b \in \mathbb{R} \text{ (or } \mathbb{C}) \]

Examples.

1) On $E = \mathbb{R}^n$,
\[f(x) = \sum_{i=1}^n y_i x_i, \quad x = (x_1, \ldots, x_n) \in \mathbb{R}^n \]
where y_i are fixed numbers.

2) More generally, on a Hilbert space $E = X$,
\[f(x) = \langle x, y \rangle, \quad x \in X, \]
where $y \in X$ is a fixed vector.

3) On $E = C([0, 1])$,
\[f(g) = \int_0^1 x(t) g(t) \, dt, \quad x \in L^1([0, 1]) \]
where $g \in C([0, 1])$ is a fixed function.
4) "Dirac delta function" on $C([0,1])$ is the functional $f(x) = x(t_0), \quad x \in C([0,1])$.

This gives rigorous meaning to the "integral"

$$\int_0^1 x(t) \delta_{t_0}(t) \, dt = x(t_0).$$

Def (Boundedness, continuity):

Let f be a linear functional on a normed space X.

1. f is continuous if f is a constant
 - $x_n \to x$ implies $f(x_n) \to f(x)$.
2. f is called bounded if $\exists C$ s.t.
 - $|f(x)| \leq C \|x\|$ for all $x \in X$.

Prop f is continuous if f is bounded.

(\Rightarrow) If f is not bounded, then $\exists (x_n) \subseteq X$ s.t.

$$|f(x_n)| \geq n \|x_n\|, \quad n = 1, 2, \ldots$$

$$\Rightarrow |f\left(\frac{x_n}{n\|x_n\|}\right)| \geq 1, \quad n = 1, 2, \ldots$$

On the other hand, $\frac{x_n}{n\|x_n\|} \to 0$ (its norm is $\frac{1}{n}$).

This contradicts the continuity of f. \(\Box\)

(\Leftarrow) Let $x_n \to x$. Then

$$|f(x_n) - f(x)| = |f(x_n - x)| \leq C \|x_n - x\| \to 0.$$

\(\Box\)

Exercise: If f is continuous at a single point then f is continuous (everywhere)
The linear space of all continuous linear functionals on \(X \) is called the **dual space** \(X^* \).

\(X^* \) is a normed space with the norm defined as

\[
\|f\| := \sup_{x \neq 0} \frac{|f(x)|}{\|x\|} = \sup_{\|x\|=1} |f(x)|, \quad f \in X^*.
\]

Exercise:
1. Check the identity

\[
\|f(x)\| \leq \|f\| \cdot \|x\| \quad \forall x \in X, \ f \in X^*.
\]

and \(\|f\| \) is the best constant in this inequality.

2. \(X^* \) is always a Banach space (i.e. complete), even if \(X \) is incomplete.

Will prove this later as a more general statement about linear operators.

Exercise: \(\ker f \) has codimension \(1 \); such subspaces are called hyperplanes.
Prop (hyperplanes) Let \(f \) be a linear functional on a linear space \(E \). Then:

(i) \(\ker f \) is a hyperplane in \(E \), i.e., \(\dim (\ker f) = 1 \).

(ii) If \(g \) is another linear functional on \(E \), then \(\ker f = \ker g \) implies \(f = ag \) for some \(a \neq 0 \).

(iii) For every hyperplane \(H \subseteq E \), there exists a linear functional \(f+o \) on \(E \) such that \(\ker f = H \).

It is enough to find a 1-dimensional linear subspace \(F \subseteq E \) s.t. \(\ker f \cap F = \{0\} \), \(\ker(\cdot + F) \subseteq E \).

\[\exists x_0 : f(x_0) \neq 0; \quad F = \text{span} \{x_0\} \]

By considering \(x_0 / f(x_0) \), w.l.o.g. we can assume \(f(x_0) = 1 \). It is clear that \(\ker f \cap F = \{0\} \).

To prove \(F \subseteq \ker f \), let \(x \in E \). Then

\[
\begin{align*}
\mathbf{x} &= f(x) x_0 + (x - f(x) x_0) \\
&= f(x) \frac{x_0}{f(x_0)} + (x - f(x) x_0) \\
&= f(x) \frac{x_0}{f(x_0)} + (x - f(x) x_0)
\end{align*}
\]

\[\tag{1} \]

\[F \subseteq \ker f \]

(ii) Applying \(g \) to both sides of (1), we obtain

\[g(x) = f(x) g(x_0) + 0 \]

Clearly \(a \neq 0 \) (for otherwise \(g = 0 \Rightarrow \ker g = \ker E = \ker f = E \Rightarrow f = 0 \) \).

(iii) \(\dim (E/H) = 1 \Rightarrow E/H = \{ a [x_0] : a \in \mathbb{R} \} \).

\[\Rightarrow \] every \([x] \in E/H \) can be represented \((x) = a [x_0] \) for some \(a \in \mathbb{R} \).

\[\Rightarrow \] if \(x \in E \), \(x = a x_0 + h \), \(a \in \mathbb{R} \), \(h \in H \).

Define \(f \) by \(f(x) = a \). Then \(\ker f = H \) and clearly \(\ker f = H \).

\[- 49 - \]