Hahn–Banach Theorem

Extensions from proper closed subspaces.

Hahn–Banach Thm. Let X_0 be a closed subspace of a normed space X.

Then every $f \in X_0^*$ admits an extension $f \in X^*$ such that

$$\|f\| = \|f_0\|.$$

1) Extension by one dimension: Assume first that X_0 is a hyperplane in X,

i.e., codim $X_0 = 1$. Therefore $x \in X$.

Fix $z \in X \setminus X_0$; then every vector $x \in X$ can be uniquely represented as

$$x = az + x_0, \quad a \in \mathbb{R}, \ x_0 \in X_0.$$

Since f_0 is linear, $f(x) = af(z) + f(x_0) = af(z) + f_0(x_0)$.

so f is also linear.

so the desired extension f is determined by just one number $f(z) = c$.

W.l.o.g. $\|f_0\| = 1$, i.e., $|f_0(x_0)| \leq \|f_0\| \forall x_0 \in X_0$.

We are looking for $\|f\| = 1$, i.e., $|f(x)| \leq \|f\| \forall x \in X$.

$$f(x) \leq \|f\| \forall x \in X.$$

(4) $f(x) = c$.

For $a = 0$, (4) is true by the assumption.

For $a > 0$ and $a < 0$ ($b = -a$):

For $a > 0$, $f_0(x)$ is equivalent to $f_0(x_0/a)$.

This is equivalent to:

$$C \leq \|f_0(x_0/a) - f_0(x_0/a)\|, \quad a > 0, \ x_0 \in X_0.$$

$$C \geq \|f_0(x_1/b) - \|x_1/x_0\|, \quad b > 0, \ x_1 \in X_1.$$
Existence of such \(C \) is equivalent to
\[
\sup_{x_0, x, \in X_0} \left(\frac{1}{a} \right) \left(f_0(x_0) - \|x\|_{\frac{a}{b}} \right) \leq \inf_{x_0, x, \in X_0} \left(\left\| x \right\|_{\frac{a}{b}} - f_0(x_0) \right),
\]
\(a > 0, x_0, x \in X_0 \).

1. To the inequality
\[
\| x \|_{\frac{a}{b}} - f_0(x_0) - \| x \|_{\frac{a}{b}} - f_0(x_0) \leq \left\| 2 + \frac{x_0}{a} \right\| - f_0(x_0),
\]
\(a, b > 0, x_0, x \in X_0 \).

2. By the inequality
\[
\left\| \alpha \right\|_{\frac{a}{b}} \leq \left\| \frac{x_0}{a} + \frac{x_0}{b} \right\| + \frac{x_0}{b},
\]
This is true:
\[
x_0 \left(\frac{x_0}{a} + \frac{x_0}{b} \right) \leq \frac{b}{a} \left\| \frac{x_0}{a} + \frac{x_0}{b} \right\|. \quad \text{QED}
\]

2. Transfinite induction.

Recall Zorn's Lemma: A partially ordered set in which every chain has an upper bound contains a maximal element.

Consider the set \(\Gamma \) of pairs \((Y, g)\) where
\(Y \subseteq X \)
\(Y \) is a subspace, \(X_0 \subseteq Y \subseteq X \)
Consider the set of all extensions of \(f_0 \).

Precisely, let \(\Gamma \) be the set of pairs \((Y, g)\) where
\(Y \) is a subspace, \(X_0 \subseteq Y \subseteq X \), and \(g \in Y^X \) is an extension of \(f_0 \).

We want to show that \(\Gamma \) contains an element with \(Y = X \).

Consider the partial order on \(\Gamma \):
\[
\left(Y_1, g_1 \right) \leq \left(Y_2, g_2 \right) \text{ if } Y_1 \subseteq Y_2, \ g_2 \text{ is an extension of } g_1.
\]

Then every chain \(\left(\left(Y_x, g_x \right) \right) \subseteq \Gamma \) has an upper bound \(\left(Y, g \right) \) in \(\Gamma \)
\(Y = U Y_x, \ \ g(x) = g_x(x) \) if \(x \in Y_x \).

Hence, by Zorn's lemma, \(\exists \) a maximal element \(\left(Y, g \right) \) in \(\Gamma \).

Now, using the proof of the first part of the proof, we could extend \(g \) onto...
Consequences of Hahn-Banach Theorem.

X: normed space.

Cor (Supporting functional)

For every \(x \in X \) there exists \(f \in X^\ast \) (called the supporting functional of \(x \)) such that:

1. \(\| f \| = 1 \);
2. \(f(x) = \| x \| \).

Note:

Recall the inequality \(|f(x)| \leq \| f \| \| x \| \); (which follows from \(\| f \| = \sup_{x \neq 0} \frac{|f(x)|}{\| x \|} \))

Comment: Hahn-Banach

Corollary says that \(\forall x \), \(\exists \ f \) which realizes the equality.

Proof: On \(X_0 = \text{span}(x) \), define the linear functional \(f_0 \) on \(X_0 \)

\[f_0(x) = \| x \| \text{.} \]

Then \(\| f_0 \| = 1 \).

An extension \(f \in X^\ast \) of \(f_0 \) guaranteed by Hahn-Banach Theorem clearly satisfies (i) and (ii) \(\Box @ D \).

Remark:

Consider again the inequality

\[|f(x)| \leq \| f \| \| x \| \,, \quad x \in X \,, \quad f \in X^\ast \,.

It is not true that \(\forall f \), \(\exists x \) which realizes the equality (Ex: Construct an example).

That is, \(\forall f \) does not necessarily attain its norm on some vector.

But \(\forall \) Cor says that every \(x \) attains its norm for some functional:

\[\| x \| = \max_{f \in X^*} \frac{|f(x)|}{\| f \|} \,.

\[-57- \]