From linear algebra,

Def (dimension): The vector space \(E \) has **dimension** \(n \) if and only if there exists a linearly independent set of \(n \) vectors \(\{e_1, e_2, \ldots, e_n\} \) such that every vector in \(E \) can be written uniquely as a linear combination

\[\mathbf{v} = \sum_{i=1}^{n} a_i e_i, \quad a_i \in \mathbb{R} \]

This set \(\{e_1, e_2, \ldots, e_n\} \) is called a **basis** of \(E \).

Examples:
1. \(\mathbb{F}_2, \mathbb{C}(a, b), \mathbb{L}(a, b), \mathbb{P}(x) \) are \(\infty \)-dimensional.
2. \(\dim \mathbb{P}_n = n; \) a basis is formed by the monomials \(\{1, x, x^2, \ldots, x^n\} \).
3. \(\dim \mathbb{R}^n = n \)
4. All other sequence spaces discussed are \(\infty \)-dim.

LECTURE 2

Quotient spaces (compare to quotient groups in algebra).

Let \(E_1 \subset E \) subspace.

- Consider the equivalence relation on \(E \):

\[x \sim y \iff x - y \in E_1 \]

\[E/E_1 = \{ \text{equivalence classes } [x] \text{ of all } x \in E \} \]

- Observe that \([x] = x + E_1 \)

\[\frac{y}{h} = \frac{x + h}{E_1} \]
We can make \(E/E_1 \) into a linear space by defining
\[
[x] + [y] := [x + y], \quad a(x) := [ax].
\]

Definition:
\(E/E_1 \) is called the **quotient space**
\(\dim E/E_1 \) is called the **codimension** of \(E_1 \), denoted \(\text{codim } E_1 \).

Examples:
1) \(L_1 \)

Let \((\mathbb{R}, \Sigma, \mu)\) : measure space (think of \([0,1]\) with Lebesgue measure)

\[
E := \{ \text{all integrable functions on } \mathbb{R} \} \\
E_1 := \{ \text{all functions } = 0 \text{ a.e.} \}
\]

Then \(L_1 (\mathbb{R}, \Sigma, \mu) := E/E_1 \).

Thus, \(L_1 \) is the space of integrable functions
where we identify functions equal a.e.

2) \(C_0 \subseteq C \)

Then \(\text{codim } C_0 = 1 \).

\[
\forall x \in C, \quad x = a \mathbb{1} + z \quad \text{for some } a \in \mathbb{R}, z \in \mathbb{C}.
\]

Hence \([x] = a [\mathbb{1}] + [z] = a [\mathbb{1}] \).

q.e.d.
Linear operators

Def
A map $A: E \to F$ between two linear spaces E and F is a linear called a **linear operator** (linear map) if

Transformation map

\[A(ax + by) = aA(x) + bA(y) \quad \forall x, y \in E, \quad a, b \in \mathbb{R} \]

often written $aAx + bAy$

Def

- $\ker(A) = \{ x \in E : Ax = 0 \}$
- $\text{Im}(A) = \{ Ax : x \in E \}$

Exercise: A is one-to-one \iff $\ker(A) = \{0\}$.

Examples

(a) $A(f) = f'$, $A: \mathcal{P}(x) \to \mathcal{P}(x)$.

(b) **Embedding operator**: $E \subseteq E$

\[A: E \to E : Ax = x \]

(c) **Quotient map**: $E_1 \leq E$

\[A: E \to E/E_1 : Ax = [x] \]

Exercise: check linearity,

\{ show that $\ker(A) = E_1$, $\text{Im}(A) = E/E_1$ (surjective) \}

(d) **Shift on sequence space**: $(A \cdot f)(k) = f(k+1)$, $\forall f$, $k \in \mathbb{Z}$
Normed spaces.

Def (normed space) let E be a linear space.

A norm $\|x\|$ for $x \in E$ is a function $E \to \mathbb{R}$ satisfying:

(i) $\|x\| \geq 0$ for all $x \in E$, $\|x\| = 0$ iff $x = 0$;
(ii) $\|x + y\| = \|x\| + \|y\|$ for all $x, y \in E$, $\alpha \in \mathbb{R}$;
(iii) $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in E$.

The space E equipped with a norm $\|\cdot\|$ is called a normed space. Denote $X = (E, \|\cdot\|)$.

Remarks

1) Norm \approx "length" of a vector.

2) Hence norm defines a metric on E:

$$d(x, y) := \|x - y\|$$

Example: check the metric axioms:

$$d(x, z) \leq d(x, y) + d(y, z)$$

$$\|x - z\| \leq \|x - y\| + \|y - z\| \quad \text{OK from (iii)}$$

3) Hence X is a topology: a topology is defined, \implies convergence.

Exercise: Prove that if $x_n \to x$ in X then $\|x_n - x\| \to 0$.

Examples

1) $l_\infty = \{\text{all bounded sequences} \mid \text{of real (complex) numbers}\}$

i.e. $x = (x_i)$ \in l_∞ iff $\sup_i |x_i| < \infty$

The norm is defined as:

$$\|x\|_{l_\infty} = \sup_i |x_i|$$

Exercise: Check norm axioms.

Exercise: Check norm axioms.
2) \(c_0 = \{ \text{all sequences converging to 0} \} \),
 i.e. \(x = (x_i), x_i \to 0 \) if \(i \lim_{i \to \infty} x_i = 0 \)
 The norm is defined as \(\|x\|_{c_0} = \sup |x_i| \).

3) \(c = \{ \text{all convergent sequences} \} \) - the norm is also defined as \(\|x\|_{c_0} \)
 (rarely used because \(c \approx \text{"almost" coincides with } c_{0,c} \) and \(c_{0,c} \) is dense in \(c_0 \).

4) \(l_1 \) consists of all sequences \(x = (x_i) \), satisfying

 \[\|x\|_1 := \sum_{i=1}^{\infty} |x_i| < \infty. \]

 Exercise: check norm axioms.

 Note that \(l_1 \subseteq c_0 \) as a linear subspace.

 LECTURE 3

5) More generally, for \(1 \leq p < \infty \),

 \(l_p \) consists of all sequences \(x = (x_i) \), satisfying

 \[\|x\|_p := \left(\sum_{i=1}^{\infty} |x_i|^p \right)^{1/p} < \infty. \]

 Note: Axioms (i) and (iii) are straightforward;

 (iii) is \(\|

 \begin{align*}
 \text{Minkowski Inequality} & : \text{For any two sequences } (a_i) \text{ and } (b_i) \text{ (finite or infinite),} \\
 & \left(\sum_{i=1}^{\infty} |a_i + b_i|^p \right)^{1/p} \leq \left(\sum_{i=1}^{\infty} |a_i|^p \right)^{1/p} + \left(\sum_{i=1}^{\infty} |b_i|^p \right)^{1/p}
 \end{align*}

 \]

 (Will prove later from geometric considerations).

 Exercise: check that for every \(x \in l_p \),

 \[\|x\|_p \to \|x\|_{c_0} \quad \text{as } p \to \infty. \]

 Exercise: for every \(x \in l_p \), explain notation \(\|x\|_{l_\infty} \).

 Remark \(l_p \subseteq l_\infty \) as a subspace (but not the same norm.)