Answers for Exam 1 Example A

1. By the inclusion–exclusion principle, the proportion is

\[
1 - (0.2 + 0.15 + 0.1) + (0.05 + 0.04 + 0.03) - (0.01) = 0.66
\]

2. First we look for solutions of the form \(u_n = \lambda^n \). Such a \(\lambda \) would satisfy \(\lambda^2 - \lambda - 6 = 0 \). Here the left hand side factors as \((\lambda - 3)(\lambda + 2)\), so \(\lambda = 3 \) or \(\lambda = -2 \). Thus \(u_n = \alpha 3^n + \beta (-2)^n \), for some choice of \(\alpha \) and \(\beta \). To determine the values of these constants, we use the initial conditions: \(u_0 = 2 = \alpha + \beta \), and \(u_1 = 3\alpha - 2\beta \). By elimination we find that \(\alpha = \beta = 1 \). That is, \(u_n = 3^n + (-2)^n \).

3. (a)

\[
\binom{52}{13, 13, 13, 13} = \frac{52!}{13!^4}
\]

(b) The aces can be distributed in \(\binom{4}{1, 1, 1, 1} = 4! = 24 \) ways. The non-aces can be distributed in \(\binom{48}{12, 12, 12, 12} \) ways. Hence the answer is \(\binom{4}{1, 1, 1, 1} \binom{48}{12, 12, 12, 12} = \frac{4!48!}{12!^4} \).

(c) \[
\frac{4!48!}{52!} = \frac{24 \cdot 13^4}{52 \cdot 51 \cdot 50 \cdot 49} = \frac{13^4}{17 \cdot 25 \cdot 49} = 0.105498.
\]

4. 1. \(0 \leq P(E) \leq 1 \) for all events \(E \subseteq S \). 2. \(P(S) = 1 \). 3. If \(E_1, E_2, E_3, \ldots \) are pairwise mutually exclusive events, then

\[
P\left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} P(E_i).
\]

5. (a) Let \(F \) be the event that the fair coin was chosen, and \(H_1 \) the event that it comes up heads. By conditioning, we see that \(P(H_1) = P(H_1|F)P(F) + P(H_1|F^c)P(F^c) = (1/2)(1/2) + 1(1/2) = 3/4 \).

(b) \(P(F|H_1) = P(H_1|F)P(F)/P(H_1) = (1/2)(1/2)/(3/4) = 1/3 \).

(c) \[
P(F|H_1H_2) = \frac{P(H_1H_2|F)P(F)}{P(H_1H_2)}
= \frac{(1/4)(1/2)}{P(H_1H_2|F)P(F) + P(H_1H_2|F^c)P(F^c)}
= \frac{1/8}{(1/4)(1/2) + 1(1/2)} = \frac{1}{5} = 0.2.
\]

(d) 1, because the other coin never comes up tails.
6. (a) 1/13, because there are 52 cards, any one of which is equally likely to be in
the fifth place, and there are 4 aces. 4/52 = 1/13.
(b) Two solutions. First, by conditioning, we find that

\[
P(N_1N_2N_3N_4A_1) = P(N_1)P(N_2|N_1)P(N_3|N_1N_2)P(N_4|N_1N_2N_3)P(A_1|N_1N_2N_3N_4)
\]

\[
= \frac{48}{52} \cdot \frac{47}{51} \cdot \frac{46}{50} \cdot \frac{45}{49} \cdot \frac{4}{48} = \frac{3 \cdot 23 \cdot 47}{5 \cdot 7^2 \cdot 13 \cdot 17} = 0.0598947
\]

Second solution, by counting: Of the 47 places from the sixth through the 52nd,
we choose three locations for the remaining aces to fall, in \(\binom{47}{3} \) ways. We order
the aces, in 4! ways, and we order the non-aces in 48! ways. Hence the answer is

\[
\frac{\binom{47}{3} \cdot 4! \cdot 48!}{52!} = \frac{47 \cdot 46 \cdot 45 \cdot 24}{6 \cdot 52 \cdot 51 \cdot 50 \cdot 49} = \frac{3 \cdot 23 \cdot 47}{5 \cdot 7^2 \cdot 13 \cdot 17} = 0.0598947
\]

(c) Let \(F \) denote the event that the fifth card is the first ace, and \(N \) the event that
the next card is the ace of spades. We compute \(P(N|F) \) in two ways. First we
condition on whether the first ace is the ace of spades. Let \(A \) denote this event.
Then

\[
P(N|F) = P(N|AF)P(A|F) + P(N|A^cF)P(A^c|F)
\]

\[
= 0 \cdot P(A|F) + 1 \cdot \frac{3}{47} \cdot \frac{3}{4} = \frac{3}{2^2 \cdot 47} = \frac{207}{216580} = 0.015957
\]

Alternatively, we appeal to the identity \(P(N|F) = P(NF)/P(F) \). We have already
computed \(P(F) \), and we find \(P(NF) \) by counting: Of the 46 locations from the
seventh through the 52nd, we choose 2, where the remaining aces fall, in \(\binom{46}{2} \) ways.
We know where the ace of spades falls. We order the remaining aces in 3! ways, and
order the 48 non-aces in 48! ways. Hence

\[
P(NF) = \binom{46}{2} \cdot 3! \cdot 48! = \frac{46 \cdot 45 \cdot 6}{2 \cdot 52 \cdot 51 \cdot 50 \cdot 49} = \frac{3^2 \cdot 23}{2^2 \cdot 5 \cdot 7^2 \cdot 13 \cdot 17} = \frac{207}{216580}
\]

Hence the desired probability is

\[
\frac{3}{2^2 \cdot 47} = \frac{207}{216580} = 0.015957
\]