Answers for Exam 1 Example A

1. By the inclusion-exclusion principle, the proportion is

$$
1-(.2+.15+.1)+(.05+.04+.03)-(.01)=0.66
$$

2. First we look for solutions of the form $u_{n}=\lambda^{n}$. Such a λ would satisfy $\lambda^{2}-\lambda-6=0$. Here the left hand side factors as $(\lambda-3)(\lambda+2)$, so $\lambda=3$ or $\lambda=-2$. Thus $u_{n}=\alpha 3^{n}+\beta(-2)^{n}$, for some choice of α and β. To determine the values of these constants, we use the initial conditions: $u_{0}=2=\alpha+\beta$, and $u_{1}=3 \alpha-2 \beta$. By elimination we find that $\alpha=\beta=1$. That is, $u_{n}=3^{n}+(-2)^{n}$.
3. (a)

$$
\left(\begin{array}{c}
52 \\
13 \\
13 \\
13 \\
13
\end{array}\right)=\frac{52!}{13!^{4}}
$$

(b) The aces can be distributed in $\left(\begin{array}{ccc}4 & \\ 1 & 1 & 1\end{array}\right)=4$! $=24$ ways. The non-aces can
 $4!48!/ 12!^{4}$.
(c)

$$
\frac{4!48!/ 12!^{4}}{52!/ 13!^{4}}=\frac{24 \cdot 13^{4}}{52 \cdot 51 \cdot 50 \cdot 49}=\frac{13^{3}}{17 \cdot 25 \cdot 49}=0.105498
$$

4. 5. $0 \leq P(E) \leq 1$ for all events $E \subseteq S$. 2. $P(S)=1$. 3. If $E_{1}, E_{2}, E_{3}, \ldots$ are pairwise mutually exclusive events, then

$$
P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

5. (a) Let F be the event that the fair coin was chosen, and H_{1} the event that it comes up heads. By conditioning, we see that $P\left(H_{1}\right)=P\left(H_{1} \mid F\right) P(F)+$ $P\left(H_{1} \mid F^{c}\right) P\left(F^{c}\right)=(1 / 2)(1 / 2)+1(1 / 2)=3 / 4$.
(b) $P\left(F \mid H_{1}\right)=P\left(H_{1} \mid F\right) P(F) / P\left(H_{1}\right)=(1 / 2)(1 / 2) /(3 / 4)=1 / 3$.
(c)

$$
\begin{aligned}
P\left(F \mid H_{1} H_{2}\right) & =\frac{P\left(H_{1} H_{2} \mid F\right) P(F)}{P\left(H_{1} H_{2}\right)} \\
& =\frac{(1 / 4)(1 / 2)}{P\left(H_{1} H_{2} \mid F\right) P(F)+P\left(H_{1} H_{2} \mid F^{c}\right) P\left(F^{c}\right)} \\
& =\frac{1 / 8}{(1 / 4)(1 / 2)+1(1 / 2)}=\frac{1}{5}=0.2 .
\end{aligned}
$$

(d) 1 , because the other coin never comes up tails.
6. (a) $1 / 13$, because there are 52 cards, any one of which is equally likely to be in the fifth place, and there are 4 aces. $4 / 52=1 / 13$.
(b) Two solutions. First, by conditioning, we find that

$$
\begin{aligned}
P\left(N_{1} N_{2} N_{3} N_{4} A_{1}\right) & =P\left(N_{1}\right) P\left(N_{2} \mid N_{1}\right) P\left(N_{3} \mid N_{1} N_{2}\right) P\left(N_{4} \mid N_{1} N_{2} N_{3}\right) P\left(A_{1} \mid N_{1} N_{2} N_{3} N_{4}\right) \\
& =\frac{48}{52} \cdot \frac{47}{51} \cdot \frac{46}{50} \cdot \frac{45}{49} \cdot \frac{4}{48}=\frac{3 \cdot 23 \cdot 47}{5 \cdot 7^{2} \cdot 13 \cdot 17}=0.0598947
\end{aligned}
$$

Second solution, by counting: Of the 47 places from the sixth through the 52 nd , we choose three locations for the remaining aces to fall, in $\binom{47}{3}$ ways. We order the aces, in 4 ! ways, and we order the non-aces in 48 ! ways. Hence the answer is

$$
\frac{\binom{47}{3} 4!48!}{52!}=\frac{47 \cdot 46 \cdot 45 \cdot 24}{6 \cdot 52 \cdot 51 \cdot 50 \cdot 49}=\frac{3 \cdot 23 \cdot 47}{5 \cdot 7^{2} \cdot 13 \cdot 17}=0.0598947 .
$$

(c) Let F denote the event that the fifth card is the first ace, and N the event that the next card is the ace of spades. We compute $P(N \mid F)$ in two ways. First we condition on whether the first ace is the ace of spades. Let A denote this event. Then

$$
\begin{aligned}
P(N \mid F) & =P(N \mid A F) P(A \mid F)+P\left(N \mid A^{c} F\right) P\left(A^{c} \mid F\right) \\
& =0 \cdot P(A \mid F)+\frac{1}{47} \cdot \frac{3}{4}=\frac{3}{2^{2} \cdot 47}=\frac{207}{216580}=0.015957 .
\end{aligned}
$$

Alternatively, we appeal to the identity $P(N \mid F)=P(N F) / P(F)$. We have already computed $P(F)$, and we find $P(N F)$ by counting: Of the 46 locations from the seventh through the 52 nd, we choose 2 , where the remaining aces fall, in $\binom{46}{2}$ ways. We know where the ace of spades falls. We order the remaining aces in 3! ways, and order the 48 non-aces in 48! ways. Hence

$$
P(N F)=\frac{\binom{46}{2} 3!48!}{52!}=\frac{46 \cdot 45 \cdot 6}{2 \cdot 52 \cdot 51 \cdot 50 \cdot 49}=\frac{3^{2} \cdot 23}{2^{2} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17}=\frac{207}{216580}
$$

Hence the desired probability is

$$
\frac{3}{2^{2} \cdot 47}=\frac{207}{216580}=0.015957
$$

