Brief Answers to the Second Sample Second Exam

1. Let X denote a random variable with $E[X]=0$ and $\operatorname{Var}(X)=1$. Put $Y=2 X+3$. (a) $E[Y]=2 E[X]+3=5$. (b) $\operatorname{Var}(Y)=2^{2} \operatorname{Var}(X)=4$. (c) Assume now that X is a normal variable. $P(Y \leq 4)=P(2 X+3 \leq 4)=P(2 X \leq 1)=P(X \leq 1 / 2)=\Phi(.5)=0.6915$.
2. Let X denote a geometric random variable with parameter p. (a) $p_{X}(k)=(1-p)^{k-1} p$ for $k=1,2,3, \ldots$ (b) $E[X]=1 / p$. (c) Let a be a positive integer. $P(X>a)=$ $\sum_{k=a+1}^{\infty}(1-p)^{k-1} p=p(1-p)^{a} \sum_{r=0}^{\infty}(1-p)^{r}=p(1-p)^{a} /(1-(1-p))=(1-p)^{a}$. (d) Let a and b be positive integers. Then $P(X>a+b \mid X>a)=P(X>a+b) / P(X>a)=$ $(1-p)^{a+b} /(1-p)^{a}=(1-p)^{b}=P(X>b)$.
3. (a) A coin that comes up heads with probability p is repeatedly flipped, in independent trials, until it comes up head for the first time. Let X denote the number of flips. Then X is a geometric random variable with parameter $p . E[X]=1 / p, \operatorname{Var}(X)=(1-p) / p^{2}$. (b) The same coin as above is flipped, in independent trials, until it comes up head for the $r^{\text {th }}$ time. Let Y denote the number of flips. Then Y is a negative binomial random variable with parameters r and $p . E[Y]=r / p$ and $\operatorname{Var}(Y)=r(1-p) / p^{2}$ (c) A shop has on average 6 customers per hour. Let X denote the number of customers in a particular hour. Then X is a Poisson random variable with parameter $\lambda=6 . E[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$ (d) In the same shop, let T denote the elapsed time between 10:17am and the moment when the next customer enters the shop. Then T is an exponential random variable with parameter $\lambda=6 . E[T]=1 / \lambda=1 / 6$ and $\operatorname{Var}(T)=1 / \lambda^{2}=1 / 36$. (e) Suppose that there are 20 passengers on a bus, and that a passenger is male with probability 0.6 , independently from passenger to passenger. Let X denote the number of male passengers on the bus. Then X is a binomial random variable with parameters $n=20$ and $p=0.6 . E[X]=n p=12$ and $\operatorname{Var}(X)=n p(1-p)=4.8$. (f) Suppose that there are 110,000 football fans in the Big House, and that a fan is male with probability 0.6 , independently from fan to fan. Let X denote the number of male fans in the Big House. Then the quantity $P(X>66,100)$ would be estimated by using a normal random variable with parameters $\mu=66,000$ and $\sigma=\sqrt{n p(1-p)}=\sqrt{26400}=162.48$.
4. A fire station is to be built along a road stretching from $(0,0)$ to $(L, 0)$ in the coordinate plane. Let $(a, 0)$ denote the position of the fire station, where $0 \leq a \leq L$. Assume that fires occur along the road at positions that are uniformly distributed from 0 to L. Let X denote the distance that the fire truck must drive to reach a fire. (a) Let $(U, 0)$ denote the position of the fire. Then $X=|U-a|$, so

$$
\begin{aligned}
E[X] & =\frac{1}{L} \int_{0}^{L}|u-a| d u=\frac{1}{L} \int_{0}^{a} a-u d u+\frac{1}{L} \int_{a}^{L} u-a d u \\
& =\frac{a^{2}}{2 L}+\frac{(L-a)^{2}}{2 L}=\frac{2 a^{2}-2 a L+L^{2}}{2 L} .
\end{aligned}
$$

(b) The derivative of this with respect to a is $(4 a-2 L) /(2 L)=(2 a-L) / L$. This is negative when $0 \leq a<L / 2$ and positive when $L / 2<a \leq L$, so the minimum of $E[X]$ occurs when $a=L / 2$.
5. The random variables X and Y take the values 0 and 1 with joint distribution $p_{X, Y}(x, y)$ as given below.

	1 $1 / 3$ $1 / 3$ 0 $1 / 6$	$1 / 6$		
		0		1
		X		

(a) $p_{X}(0)=1 / 2, p_{X}(1)=1 / 2$. (b) $p_{Y}(0)=1 / 3, p_{Y}(1)=2 / 3$. (c) X and Y are independent because $p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$ for $x=0,1$ and $y=0,1$.

