1. Let \(X \) denote a random variable with \(E[X] = 0 \) and \(\text{Var}(X) = 1 \). Put \(Y = 2X + 3 \). (a) \(E[Y] = 2E[X] + 3 = 5 \). (b) \(\text{Var}(Y) = 2^2\text{Var}(X) = 4 \). (c) Assume now that \(X \) is a normal variable. \(P(Y \leq 4) = P(2X + 3 \leq 4) = P(2X \leq 1) = P(X \leq 1/2) = \Phi(.5) = 0.6915 \).

2. Let \(X \) denote a geometric random variable with parameter \(p \). (a) \(p_X(k) = (1 - p)^{k-1}p \) for \(k = 1, 2, 3, \ldots \). (b) \(E[X] = 1/p \). (c) Let \(a \) be a positive integer. \(P(X > a) = \sum_{k=a+1}^\infty (1-p)^{k-1}p = p(1-p)^a \sum_{r=0}^\infty (1-p)^r = p(1-p)^a/(1 - (1-p)) = (1-p)^a \). (d) Let \(a \) and \(b \) be positive integers. Then \(P(X > a+b|X > a) = P(X > a+b)/P(X > a) = (1-p)^{a+b}/(1-p)^a = (1-p)^b = P(X > b) \).

3. (a) A coin that comes up heads with probability \(p \) is repeatedly flipped, in independent trials, until it comes up head for the first time. Let \(X \) denote the number of flips. Then \(X \) is a geometric random variable with parameter \(p \). \(E[X] = 1/p \), \(\text{Var}(X) = (1-p)/p^2 \). (b) The same coin as above is flipped, in independent trials, until it comes up head for the \(r \)th time. Let \(Y \) denote the number of flips. Then \(Y \) is a negative binomial random variable with parameters \(r \) and \(p \). \(E[Y] = r/p \) and \(\text{Var}(Y) = r(1-p)/p^2 \). (c) A shop has on average 6 customers per hour. Let \(X \) denote the number of customers in a particular hour. Then \(X \) is a Poisson random variable with parameter \(\lambda = 6 \). \(E[X] = \lambda \) and \(\text{Var}(X) = \lambda \). (d) In the same shop, let \(T \) denote the elapsed time between 10:17am and the moment when the next customer enters the shop. Then \(T \) is an exponential random variable with parameter \(\lambda = 6 \). \(E[T] = 1/\lambda = 1/6 \) and \(\text{Var}(T) = 1/\lambda^2 = 1/36 \). (e) Suppose that there are 20 passengers on a bus, and that a passenger is male with probability 0.6, independently from passenger to passenger. Let \(X \) denote the number of male passengers on the bus. Then \(X \) is a binomial random variable with parameters \(n = 20 \) and \(p = 0.6 \). \(E[X] = np = 12 \) and \(\text{Var}(X) = np(1-p) = 4.8 \). (f) Suppose that there are 110,000 football fans in the Big House, and that a fan is male with probability 0.6, independently from fan to fan. Let \(X \) denote the number of male fans in the Big House. Then the quantity \(P(X > 66,100) \) would be estimated by using a normal random variable with parameters \(\mu = 66,000 \) and \(\sigma = \sqrt{np(1-p)} = \sqrt{26400} = 162.48 \).

4. A fire station is to be built along a road stretching from \((0, 0)\) to \((L, 0)\) in the coordinate plane. Let \((a, 0)\) denote the position of the fire station, where \(0 \leq a \leq L\). Assume that fires occur along the road at positions that are uniformly distributed from 0 to \(L\). Let \(X \) denote the distance that the fire truck must drive to reach a fire. (a) Let \((U, 0)\) denote the position of the fire. Then \(X = |U - a| \), so

\[
E[X] = \frac{1}{L} \int_0^L |u - a| \, du = \frac{1}{L} \int_0^a a - u \, du + \frac{1}{L} \int_a^L u - a \, du
= \frac{a^2}{2L} + \frac{(L-a)^2}{2L} = \frac{2a^2 - 2aL + L^2}{2L}.
\]

(b) The derivative of this with respect to \(a \) is \((4a-2L)/(2L) = (2a-L)/L\). This is negative when \(0 \leq a < L/2\) and positive when \(L/2 < a \leq L\), so the minimum of \(E[X]\) occurs when \(a = L/2\).
5. The random variables X and Y take the values 0 and 1 with joint distribution $p_{X,Y}(x,y)$ as given below.

\[
\begin{array}{ccc}
Y & 1/3 & 1/3 \\
0 & 1/6 & 1/6 \\
0 & 1 \\
X
\end{array}
\]

(a) $p_X(0) = 1/2$, $p_X(1) = 1/2$. (b) $p_Y(0) = 1/3$, $p_Y(1) = 2/3$. (c) X and Y are independent because $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for $x = 0,1$ and $y = 0,1$.