Brief Answers to the Second Sample Second Exam

1. Let X denote a random variable with E[X] = 0 and Var(X) = 1. Put Y = 2X + 3. (a) E[Y] = 2E[X] + 3 = 5. (b) $Var(Y) = 2^2Var(X) = 4$. (c) Assume now that X is a normal variable. $P(Y \le 4) = P(2X + 3 \le 4) = P(2X \le 1) = P(X \le 1/2) = \Phi(.5) = 0.6915$.

2. Let X denote a geometric random variable with parameter p. (a) $p_X(k) = (1-p)^{k-1}p$ for k = 1, 2, 3, ... (b) E[X] = 1/p. (c) Let a be a positive integer. $P(X > a) = \sum_{k=a+1}^{\infty} (1-p)^{k-1}p = p(1-p)^a \sum_{r=0}^{\infty} (1-p)^r = p(1-p)^a/(1-(1-p)) = (1-p)^a$. (d) Let a and b be positive integers. Then $P(X > a + b|X > a) = P(X > a + b)/P(X > a) = (1-p)^{a+b}/(1-p)^a = (1-p)^b = P(X > b)$.

3. (a) A coin that comes up heads with probability p is repeatedly flipped, in independent trials, until it comes up head for the first time. Let X denote the number of flips. Then Xis a geometric random variable with parameter p. E[X] = 1/p, $Var(X) = (1-p)/p^2$. (b) The same coin as above is flipped, in independent trials, until it comes up head for the r^{th} time. Let Y denote the number of flips. Then Y is a negative binomial random variable with parameters r and p. E[Y] = r/p and $Var(Y) = r(1-p)/p^2$ (c) A shop has on average 6 customers per hour. Let X denote the number of customers in a particular hour. Then X is a Poisson random variable with parameter $\lambda = 6$. $E[X] = \lambda$ and $Var(X) = \lambda$ (d) In the same shop, let T denote the elapsed time between 10:17 am and the moment when the next customer enters the shop. Then T is an exponential random variable with parameter $\lambda = 6$. $E[T] = 1/\lambda = 1/6$ and $Var(T) = 1/\lambda^2 = 1/36$. (e) Suppose that there are 20 passengers on a bus, and that a passenger is male with probability 0.6, independently from passenger to passenger. Let X denote the number of male passengers on the bus. Then X is a binomial random variable with parameters n = 20 and p = 0.6. E[X] = np = 12and Var(X) = np(1-p) = 4.8. (f) Suppose that there are 110,000 football fans in the Big House, and that a fan is male with probability 0.6, independently from fan to fan. Let X denote the number of male fans in the Big House. Then the quantity P(X > 66,100)would be estimated by using a normal random variable with parameters $\mu = 66,000$ and $\sigma = \sqrt{np(1-p)} = \sqrt{26400} = 162.48.$

4. A fire station is to be built along a road stretching from (0,0) to (L,0) in the coordinate plane. Let (a,0) denote the position of the fire station, where $0 \le a \le L$. Assume that fires occur along the road at positions that are uniformly distributed from 0 to L. Let Xdenote the distance that the fire truck must drive to reach a fire. (a) Let (U,0) denote the position of the fire. Then X = |U - a|, so

$$E[X] = \frac{1}{L} \int_0^L |u - a| \, du = \frac{1}{L} \int_0^a a - u \, du + \frac{1}{L} \int_a^L u - a \, du$$
$$= \frac{a^2}{2L} + \frac{(L - a)^2}{2L} = \frac{2a^2 - 2aL + L^2}{2L}.$$

(b) The derivative of this with respect to a is (4a-2L)/(2L) = (2a-L)/L. This is negative when $0 \le a < L/2$ and positive when $L/2 < a \le L$, so the minimum of E[X] occurs when a = L/2.

5. The random variables X and Y take the values 0 and 1 with joint distribution $p_{X,Y}(x,y)$ as given below.

(a) $p_X(0) = 1/2$, $p_X(1) = 1/2$. (b) $p_Y(0) = 1/3$, $p_Y(1) = 2/3$. (c) X and Y are independent because $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for x = 0, 1 and y = 0, 1.