Second Sample Second Exam

1. Let X denote a random variable with $E[X]=0$ and $\operatorname{Var}(X)=1$. Put $Y=2 X+3$. (a) Find $E[Y]$. (b) Find $\operatorname{Var}(Y)$. (c) Assume now that X is a normal variable. Find $P(Y \leq 4)$.
2. Let X denote a geometric random variable with parameter p. (a) Find $p_{X}(k)$ for what values of k ? (b)What is $E[X]$? (c) Let a be a non-negative integer. Show that $P(X>a)=(1-p)^{a}$. (d) Let a and b be non-negative integers. Show that
3. Describe the random variable that would be used as a model, in the following situations. (a) A coin that comes up heads with probability p is repeatedly flipped, in independent trials, until it comes up heads for the first time. Let X denote the number of flips. Then X is a \qquad random variable with parameter(s) \qquad
$E[X]=$ \qquad

$$
\operatorname{Var}(X)=
$$

\qquad
(b) The same coin as above is flipped, in independent trials, until it comes up heads for the $r^{\text {th }}$ time. Let Y denote the number of flips. Then Y is a \qquad random variable with parameter(s) \qquad .
$E[Y]=$ \qquad

$$
\operatorname{Var}(Y)=
$$

\qquad
(c) A shop has on average 6 customers per hour. Let X denote the number of customers in a particular hour. Then X is a \qquad random variable with parameter(s)
$E[X]=$ \qquad

$$
\operatorname{Var}(X)=
$$

\qquad
(d) In the same shop, let T denote the elapsed time (in hours) between 10:17am and the moment when the next customer enters the shop. Then T is a \qquad random variable with parameter(s) \qquad .
$E[T]=$ \qquad

$$
\operatorname{Var}(T)=
$$

\qquad
(e) Suppose that there are 20 passengers on a bus, and that a passenger is male with probability 0.6 , independently from passenger to passenger. Let X denote the number of male passengers on the bus. Then X is a \qquad random variable with parameter(s) \qquad _.
$E[X]=$ \qquad

$$
\operatorname{Var}(X)=
$$

\qquad
(f) Suppose that there are 110,000 football fans in the Big House, and that a fan is male with probability 0.6 , independently from fan to fan. Let X denote the number of male fans in the Big House. Then the quantity $P(X>66,100)$ would be estimated by using a \qquad random variable with parameter(s) \qquad
\qquad .
4. A fire station is to be built along a road stretching from $(0,0)$ to $(L, 0)$ in the coordinate plane. Let $(a, 0)$ denote the position of the fire station, where $0 \leq a \leq L$. Assume that fires occur along the road at positions that are uniformly distributed from 0 to L. Let X denote the distance that the fire truck must drive to reach a fire.
(a) Find a formula for $E[X]$ in terms of a and L.
(b) How should a be chosen, in order to minimize $E[X]$?
5. The random variables X and Y take the values 0 and 1 with joint distribution $p_{X, Y}(x, y)$ as given below.

	1 $1 / 3$ $1 / 3$ 0 $1 / 6$	$1 / 6$	
		0	

(a) Compute the marginal statistic $p_{X}(x)$.
(b) Compute the marginal statistic $p_{Y}(y)$.
(c) Are X and Y independent? (Explain why or why not.)

