Second Sample Second Exam

1. Let X denote a random variable with $E[X] = 0$ and $\text{Var}(X) = 1$. Put $Y = 2X + 3$.
 (a) Find $E[Y]$.
 (b) Find $\text{Var}(Y)$.
 (c) Assume now that X is a normal variable. Find $P(Y \leq 4)$.

2. Let X denote a geometric random variable with parameter p.
 (a) Find $p_X(k)$ for what values of k?
 (b) What is $E[X]$?
 (c) Let a be a non-negative integer. Show that $P(X > a) = (1 - p)^a$.
 (d) Let a and b be non-negative integers. Show that

3. Describe the random variable that would be used as a model, in the following situations.
 (a) A coin that comes up heads with probability p is repeatedly flipped, in independent
 trials, until it comes up heads for the first time. Let X denote the number of flips. Then
 X is a _________________ random variable with parameter(s) _________________.
 $E[X] =$ _______________
 $\text{Var}(X) = $ _________________.

 (b) The same coin as above is flipped, in independent trials, until it comes up heads for the
 r^{th} time. Let Y denote the number of flips. Then Y is a ________________ random
 variable with parameter(s) _________________.
 $E[Y] =$ _______________
 $\text{Var}(Y) = $ _________________.

 (c) A shop has on average 6 customers per hour. Let X denote the number of customers in
 a particular hour. Then X is a ________________ random variable with parameter(s)
 _________________.
 $E[X] =$ _______________
 $\text{Var}(X) = $ _________________.

 (d) In the same shop, let T denote the elapsed time (in hours) between 10:17am and the
 moment when the next customer enters the shop. Then T is a ________________ random
 variable with parameter(s) _________________.
 $E[T] =$ _______________
 $\text{Var}(T) = $ _________________.

 (e) Suppose that there are 20 passengers on a bus, and that a passenger is male with
 probability 0.6, independently from passenger to passenger. Let X denote the number of
 male passengers on the bus. Then X is a ________________ random variable with
 parameter(s) _________________.
 $E[X] =$ _______________
 $\text{Var}(X) = $ _________________.

 (f) Suppose that there are 110,000 football fans in the Big House, and that a fan is male
 with probability 0.6, independently from fan to fan. Let X denote the number of male
 fans in the Big House. Then the quantity $P(X > 66,100)$ would be estimated by using
 a ________________ random variable with parameter(s) _________________.

4. A fire station is to be built along a road stretching from $(0, 0)$ to $(L, 0)$ in the coordinate
 plane. Let $(a, 0)$ denote the position of the fire station, where $0 \leq a \leq L$. Assume that
 fires occur along the road at positions that are uniformly distributed from 0 to L. Let X
 denote the distance that the fire truck must drive to reach a fire.
(a) Find a formula for $E[X]$ in terms of a and L.
(b) How should a be chosen, in order to minimize $E[X]$?

5. The random variables X and Y take the values 0 and 1 with joint distribution $p_{X,Y}(x, y)$ as given below.

\[
\begin{array}{ccc}
Y & 0 & 1 \\
\hline
0 & 1/6 & 1/6 \\
1/3 & 1/3 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

(a) Compute the marginal statistic $p_X(x)$.
(b) Compute the marginal statistic $p_Y(y)$.
(c) Are X and Y independent? (Explain why or why not.)