Second Sample Second Exam

1. Let X denote a random variable with E[X] = 0 and Var(X) = 1. Put Y = 2X + 3. (a) Find E[Y]. (b) Find Var(Y). (c) Assume now that X is a normal variable. Find $P(Y \le 4)$.

2. Let X denote a geometric random variable with parameter p. (a) Find $p_X(k)$ for what values of k? (b)What is E[X]? (c) Let a be a non-negative integer. Show that $P(X > a) = (1 - p)^a$. (d) Let a and b be non-negative integers. Show that

3. Describe the random variable that would be used as a model, in the following situations. (a) A coin that comes up heads with probability p is repeatedly flipped, in independent trials, until it comes up heads for the first time. Let X denote the number of flips. Then X is a _______random variable with parameter(s) _______. $E[X] = _______$ Var $(X) = _______$

(b) The same coin as above is flipped, in independent trials, until it comes up heads for the r^{th} time. Let Y denote the number of flips. Then Y is a ______ random variable with parameter(s) ______.

E[Y] =

(c) A shop has on average 6 customers per hour. Let X denote the number of customers in a particular hour. Then X is a ______ random variable with parameter(s)

E[X] =_____

_____.

(d) In the same shop, let T denote the elapsed time (in hours) between 10:17am and the moment when the next customer enters the shop. Then T is a ________ random variable with parameter(s) _______.

 $E[T] = _$

(e) Suppose that there are 20 passengers on a bus, and that a passenger is male with probability 0.6, independently from passenger to passenger. Let X denote the number of male passengers on the bus. Then X is a ______ random variable with parameter(s) ______.

 $E[X] = _$

(f) Suppose that there are 110,000 football fans in the Big House, and that a fan is male with probability 0.6, independently from fan to fan. Let X denote the number of male fans in the Big House. Then the quantity P(X > 66,100) would be estimated by using a ______ random variable with parameter(s) ______

 $\operatorname{Var}(Y) =$ _____

 $\operatorname{Var}(X) =$

 $\operatorname{Var}(X) = _$

 $\operatorname{Var}(T) =$

^{4.} A fire station is to be built along a road stretching from (0,0) to (L,0) in the coordinate plane. Let (a,0) denote the position of the fire station, where $0 \le a \le L$. Assume that fires occur along the road at positions that are uniformly distributed from 0 to L. Let X denote the distance that the fire truck must drive to reach a fire.

- (a) Find a formula for E[X] in terms of a and L.
- (b) How should a be chosen, in order to minimize E[X]?

5. The random variables X and Y take the values 0 and 1 with joint distribution $p_{X,Y}(x,y)$ as given below.

$$\begin{array}{cccccccc} 1 & 1/3 & 1/3 \\ Y & & & \\ & 0 & 1/6 & 1/6 \\ & & 0 & 1 \\ & & & X \end{array}$$

(a) Compute the marginal statistic $p_X(x)$.

(b) Compute the marginal statistic $p_Y(y)$.

(c) Are X and Y independent? (Explain why or why not.)