Computing expectation by conditioning. (§7.5).

- Recall computing probabilities by conditioning. Suppose $S = \bigcup_i F_i$ is a decomposition into mutually exclusive events F_i.

Then law of total probability (p. 20) states:

$$P(E) = \sum_i P(E \mid F_i) \cdot P(F_i)$$

- There is a similar:

\[E[X] = \sum_i E[X \mid F_i] \cdot P(F_i) \]

Here $E[X \mid F]$ refers to the conditional expectation of X given event F, defined as:

\[E[X \mid F] = \sum_x x \cdot P\{X = x \mid F\} \]

(recall that $E[X] = \sum_x x \cdot P\{X = x\}$)

\[\text{Proof of law of total Exp:} \]

\[E[X] = \sum_x x \cdot P\{X = x\} \quad \text{(by def)} \]

\[= \sum_x \left(\sum_i P\{X = x \mid F_i\} \cdot P(F_i) \right) \quad \text{(by law of Total Prob.)} \]

\[= \sum_i \left(\sum_x x \cdot P\{X = x \mid F_i\} \right) \cdot P(F_i) = \sum_i E[X \mid F_i] \cdot P(F_i). \quad \text{QED.} \]

Ex. The average # of traffic accidents in Berkeley on a rainy day is 9.

It rains with prob. 0.2 in Berkeley.

What is the ave # of accidents per day in Berkeley?

\[E[X] = E[X \mid \text{Rain}] \cdot P(\text{Rain}) + E[X \mid \text{Dry}] \cdot P(\text{Dry}) \quad \text{(by law of Total Exp)} \]

\[= 9 \cdot 0.2 + 3 \cdot 0.8 = 4.2 \]
A miner is trapped in a mine with three doors. One door leads to a tunnel which takes the miner to safety in 2 hrs of travel. The other two doors are connected by a loop, which one can pass in 3 hrs. The miner is equally likely to choose any of the two doors at any time. ("memoryless"). What is the expected time it takes to reach safety?

Condition on the miner's initial decision:

\[
E[X] = E[X|G] P(G) + E[X|B] P(B)
\]

\[
= \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{3} + 3 + E[X]
\]

Solving yields

\[
E[X] = \frac{2}{3} + \frac{2}{3} (3 + E[X])
\]

\[
E[X] = 8 \text{ hrs}
\]

4.8.1. Geometric distribution

"Time until first success":

Def: Consider an (infinite) sequence of indep. trials, with \(p \) = prob. of success in each trial.

let \(X = \# \) of the trial that is the first success

Then \(X \) is called a geometric r.v.; notation:

\(X \sim \text{Geom}(p) \)

pmf:

\[
p(k) = P\{X=k\} = (1-p)^{k-1} \cdot p, \quad k = 1, 2, ...
\]

- \(p_k \) = prob. that the first \(k-1 \) trials are failures
- \(p_k \) = prob. that the \(k^{th} \) trial is a success
Remark: Since \[\sum_{k=1}^{\infty} p(k) = 1, \]

\[\sum_{k=1}^{\infty} (1-p)^{k-1} p = 1 \implies \sum_{k=1}^{\infty} (1-p)^{k-1} = \frac{1}{p}. \] (Geometric series).

\[E(X) = \begin{cases} \frac{1}{p} & \text{(after 1 failure, we start over again).} \\ \text{memoryless property} \end{cases} \]

\[E[X] = \frac{1}{p} \]

Ex (refer to Ex. p. 48): How many doors on average will the minor open, until safety?

\[Y \sim \text{Geom}(\frac{1}{2}) \implies E[Y] = 3 \text{ doors.} \]

(quality control).

Each time a notebook is manufactured, a fault may occur in the assembly line with prob. \(p = 0.05 \), which will cause defects in the laptop being manufactured and all further laptops.

The quality control department checks all manufactured laptops; a defect is found in a laptop with prob. \(q = 0.9 \).
When a defect is found, the laptop is disposed of, and the line gets repaired.

What is % of defective laptops produced?

\[C = \text{"Good"}, \quad B = \text{"Bad"} \]

\[X = \# \text{ of laptops until fault occurs}; \quad Y = \# \text{ of bad laptops until defect found}. \]

\[X \sim \text{Geom}(p), \quad Y \sim \text{Geom}(q). \quad E[X] = \frac{1}{p}, \quad E[Y] = \frac{1}{q}. \]

Between two consecutive line repairs:

\[\# \text{ of good laptops} = X-1, \quad \# \text{ of bad laptops} = Y-1 \quad (1 \text{ is disposed of}). \]

\[E[L] = \frac{1}{p} - 1, \quad E[L] = \frac{1}{q} - 1. \]

\[\text{Ans:} \quad \frac{\frac{1}{p} - 1}{\frac{1}{p} + \frac{1}{q} - 1} \approx 0.058 \quad (\approx 5.8\%). \]

Ex (for home): \(X \sim \text{Geom}(p) \implies \text{Var}(X) = \frac{1-p}{p^2} \) (Textbook Ex. 7.51).