7.1 Properties of Expectation

Recall:
- \(E(X) = \sum x \cdot p(x) \) for discrete \(X \),
- \(E(X) = \int x \cdot f(x) \, dx \) for continuous \(X \).

\[E[g(X)] = \sum g(x) \cdot f(x) \, dx \]

\(E[g(x,y)] = \int \int g(x,y) \cdot f(x,y) \, dx \, dy \)

Two people agree to meet btw 12:00 and 1:00 pm.

They arrive at random times, with a uniform distribution in this interval.

Expected waiting time?

\(x, y \sim \text{Unif}(0,1) \) indep, \(E[|x-y|] = ? \)

\(f(x,y) = 1, \quad 0 \leq x, y \leq 1 \).

\[E[|x-y|] = \int_0^1 \int_0^1 |x-y| \, dx \, dy \]

\[= \int_0^1 \int_0^{y} (y-x) \, dx \, dy + \int_0^1 \int_y^1 (x-y) \, dx \, dy \]

\[= \int_0^1 \frac{y^2}{2} \, dy + \int_0^1 \frac{(1-y)^2}{2} \, dy = \int_0^1 y^2 \, dy = \frac{1}{3} \]

\[= \frac{20}{12} = \frac{5}{3} \text{ min} \]

\(\text{Ex.} \)

A dart is thrown at a round board of radius 1.

Compute the expected dist. to the center.

\((X,Y) \sim \text{Unif}(0,1) \text{ circle} \)

\[E[X^2+Y^2] = \int_0^1 \int_0^1 \sqrt{x^2+y^2} \, dx \, dy \rightarrow \text{polar coord:} \]

\[= \frac{1}{2} \int_0^{2\pi} \int_0^1 r^3 \, dr \, d\theta = \frac{2\pi}{12} \int_0^1 r^3 \, dr = 2 \cdot \frac{r^4}{4} \bigg|_0^1 = \frac{2}{3} \]

\(\text{Alternative solution: by IIW, } \frac{\pi \cdot 4}{2} = 6.52, \text{ the dist. of a random pt is } \text{polar coord:} \)

\[f(r, \theta) = \frac{1}{2\pi}, \quad 0 \leq r \leq 1, \quad 0 \leq \theta < 2\pi \]

\[\phi_r(r) = \frac{1}{2\pi}, \quad 0 \leq r \leq 1 \]

\[E[\phi_r] = \int_0^1 r^2 \, dr = \frac{r^3}{3} \bigg|_0^1 = \frac{2}{3} \]
\[\forall X, Y: \quad E(X + Y) = E(X) + E(Y) \]

- Not even independent!
- We formulated and used this before, but never proved.

\[E(X + Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) f(x, y) \, dx \, dy \]
\[= \int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(x, y) \, dy) \, dx + \int_{-\infty}^{\infty} f_x(x) \, dx \]
\[= \int_{-\infty}^{\infty} x f_x(x) \, dx + \int_{-\infty}^{\infty} y f_y(y) \, dy = E(X) + E(Y). \]

Cor
\[E(\sum_i X_i) = \sum_i E(X_i) \]

(by induction)

Prop
\[X \geq 0 \Rightarrow E(X) \geq 0 \]

(for cont.)

\[E(X) = \int_{\mathbb{R}} x f(x) \, dx \geq 0 \]

Cor
\[X > Y \Rightarrow E(X) = E(Y) \]

\[X - Y > 0 \Rightarrow E(X - Y) > 0 \]
\[E(X - Y) = E(X) - E(Y). \]

Cor
\[a < X < b \Rightarrow a < E(X) < b \]

(follows from previous cor.)
7.2 - 7.3. Prop Expectation of sums of r.v.'s

\[E(x) = E(x_1) + \cdots + E(x_n) \]

\[E(x) \quad \text{even if not indep} \]

Application to counting questions

Example (Deaths in the town [D. Bernoulli 1720-1782]) - [Ghahramani Ex. 10.3]

- \(n \) married couples live in a town.
- \(n \) death occur at random in the town.
- Expected \(k \) of intact couples?

\[X = X_1 + \cdots + X_n \quad \text{where} \quad X_i = \begin{cases} 1, & \text{\(i \)'th couple is intact} \\ 0, & \text{otherwise} \end{cases} \]

\[X_i \sim \text{Bernoulli}(p). \]

\[p = P(X_i = 1) = P(\text{\(i \)'th couple is intact}) \]

\[= P(\text{all but the \(i \)'th death occur among the other \(n-1 \) couples}) \]

\[= \frac{\binom{2n-2}{m}}{\binom{2n}{m}} = \frac{(2n-2)!}{m! (2n-m-1)!} \cdot \frac{1}{(2n-2)} \cdot \frac{1}{(2n-1)} \]

\[= \frac{(2n-m)(2n-m-1)}{2n 3(2n-1)} \]

\[EX = \sum_{i=1}^{n} E(X_i) = n \cdot E(X_1) = n \cdot p = \frac{(2n-m)(2n-m-1)}{2(2n-1)}. \]

Illustration: \(n=1000 \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(E(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>90.2</td>
</tr>
<tr>
<td>600</td>
<td>490</td>
</tr>
<tr>
<td>1200</td>
<td>150</td>
</tr>
<tr>
<td>1500</td>
<td>62</td>
</tr>
<tr>
<td>1800</td>
<td>10</td>
</tr>
</tbody>
</table>
Ex. (Coupon Collecting Problem)

There are n coupons of different types of coupons. Each time one obtains a coupon, it is equally likely to be of any type.

Compute the expected number of the different coupons among N collected.

Applications: Clinical trials—waits for side effects of drug.

Let $Y = N - X$, where X is the number of uncollected coupons.

$E[Y] = ?$

$Y = Y_1 + Y_2 + \ldots + Y_n$, where $Y_i = \begin{cases} \frac{1}{n}, & \text{coupon of } i^{th} \text{ type is not collected} \\ 0, & \text{otherwise} \end{cases}$

$$E[Y] = \sum_{i=1}^{n} E[Y_i] = n \cdot \frac{1}{n} \cdot 0 = n \cdot \frac{1}{n} = 1.$$

$p = P\{\text{coupon of } i^{th} \text{ type is not collected}\} = \left(1 - \frac{1}{n}\right)^N$.

So $E[Y] = \sum_{i=1}^{N} p = n \cdot \left(1 - \frac{1}{n}\right)^N$.

$$E[X] = n - n \cdot \left(1 - \frac{1}{n}\right)^N$$

Asymptotic Analysis: $n \to \infty$, $N = \ln n$

$$E[Y] \approx n \cdot e^{-N/n} = n \cdot \frac{ne^{-t}}{n!}.$$

Then $E[Y] < 1$ for $t \sim \ln n \Rightarrow$ for $N \sim \ln n$.

Should expect a complete collection in time $N \sim \ln n$.

Let's verify this:

-90-