CONTINUED FRACTIONS

ROMAN VERSHYNIN, MATH 451, FALL 2011

As an application of the theory of limits, we will verify that

$$
\begin{equation*}
1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}=\sqrt{2} . \tag{1}
\end{equation*}
$$

An object in the left side of the equation is called a continued fraction. Equation (1) is one example of a rich theory of continuous fractions, see Wikipedia if interested.

One can rigorously define the continuous fraction in (1) as a limit of the sequence of finite fractions of the form

$$
1, \quad 1+\frac{1}{2}, \quad 1+\frac{1}{2+\frac{1}{2}}, \quad 1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}, \ldots
$$

The first six terms of this sequence are approximately

$$
1,1.5,1.4,1.417,1.4138,1.41429,
$$

so the sequence indeed seems to converge to $\sqrt{2} \approx 1.414214$ quite fast.
The following theorem is a rigorous way to state this convergence.
Theorem 1. Let $a_{1}=1$ and

$$
\begin{equation*}
a_{n+1}=1+\frac{1}{1+a_{n}}, \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

Then

$$
\lim a_{n}=\sqrt{2}
$$

We shall prove the theorem by the following series of results.
Lemma 2. Assume that $\lim a_{n}=a \in \mathbb{R}$ exists. Then

$$
\lim a_{n}=\sqrt{2}
$$

Proof. Taking limits of both sides of (2) and using limit theorems (do this), we obtain

$$
a=1+\frac{1}{1+a} .
$$

Solving this equation (check this) yields $a=\sqrt{2}$.
Unfortunately $\left(a_{n}\right)$ is not a monotone sequence, which makes it impossible to apply Weierstrass theorem. However, the subsequences of even terms $\left(a_{2 n}\right)_{n=1}^{\infty}$ and of odd terms $\left(a_{2 n+1}\right)_{n=1}^{\infty}$ both turn out to be monotone and bounded. This will allow us to use Weierstrass theorem separately for each subsequence, and them "glue" them together.

Lemma 3. One has

$$
a_{2 n} \geq \sqrt{2}, \quad a_{2 n+2} \leq a_{2 n} \quad \text { for all } n
$$

Proof. A calculation gives

$$
a_{2 n+2}=\frac{4+3 a_{2 n}}{3+2 a_{2 n}} \quad \text { for all } n
$$

Then both inequalities in the statement of the lemma can be proved by induction. (Do this.)

Lemma 3 states that the sequence $\left(a_{2 n}\right)_{n=1}^{\infty}$ is non-increasing and bounded below. By Weierstrass theorem, this sequence converges. Arguing similarly to Lemma 2 (check this) we deduce that

$$
\lim a_{2 n}=\sqrt{2}
$$

A similar argument (give it) for $\left(a_{2 n+1}\right)_{n=1}^{\infty}$ gives

$$
\lim a_{2 n+1}=\sqrt{2}
$$

Combining the two subsequences together (how?), one concludes that

$$
\lim a_{n}=\sqrt{2}
$$

This proves the Theorem.

