CONTINUED FRACTIONS

ROMAN VERSHYNIN, MATH 451, FALL 2011

As an application of the theory of limits, we will verify that

(1)
$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \dots}}} = \sqrt{2}.$$

An object in the left side of the equation is called a *continued fraction*. Equation (1) is one example of a rich theory of continuous fractions, see Wikipedia if interested.

One can rigorously define the continuous fraction in (1) as a limit of the sequence of finite fractions of the form

1,
$$1 + \frac{1}{2}$$
, $1 + \frac{1}{2 + \frac{1}{2}}$, $1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}$, ...

The first six terms of this sequence are approximately

so the sequence indeed seems to converge to $\sqrt{2} \approx 1.414214$ quite fast. The following theorem is a rigorous way to state this convergence.

Theorem 1. Let $a_1 = 1$ and

(2)
$$a_{n+1} = 1 + \frac{1}{1+a_n}, \quad n = 1, 2, \dots$$

Then

$$\lim a_n = \sqrt{2}.$$

We shall prove the theorem by the following series of results.

Lemma 2. Assume that $\lim a_n = a \in \mathbb{R}$ exists. Then

$$\lim a_n = \sqrt{2}$$

Proof. Taking limits of both sides of (2) and using limit theorems (do this), we obtain

$$a = 1 + \frac{1}{1+a}.$$

his) yields $a = \sqrt{2}.$

Solving this equation (check this) yields $a = \sqrt{2}$.

Unfortunately (a_n) is not a monotone sequence, which makes it impossible to apply Weierstrass theorem. However, the subsequences of even terms $(a_{2n})_{n=1}^{\infty}$ and of odd terms $(a_{2n+1})_{n=1}^{\infty}$ both turn out to be monotone and bounded. This will allow us to use Weierstrass theorem separately for each subsequence, and them "glue" them together. Lemma 3. One has

$$a_{2n} \ge \sqrt{2}, \qquad a_{2n+2} \le a_{2n} \qquad for all n.$$

Proof. A calculation gives

$$a_{2n+2} = \frac{4+3a_{2n}}{3+2a_{2n}}$$
 for all n .

Then both inequalities in the statement of the lemma can be proved by induction. (Do this.)

Lemma 3 states that the sequence $(a_{2n})_{n=1}^{\infty}$ is non-increasing and bounded below. By Weierstrass theorem, this sequence converges. Arguing similarly to Lemma 2 (check this) we deduce that

$$\lim a_{2n} = \sqrt{2}.$$

A similar argument (give it) for $(a_{2n+1})_{n=1}^{\infty}$ gives $\lim a_{2n+1} = \sqrt{2}.$

$$\lim a_{2n+1} = \sqrt{2}$$

Combining the two subsequences together (how?), one concludes that

$$\lim a_n = \sqrt{2}.$$

This proves the Theorem.