
Fall 2012 Math 419

Review Sheet for Final Exam

Read also Review Sheet for Midterm Exam

Terminology

Can you explain these words?

1. permutation

2. transposition

3. sign of a permutation

4. determinant

5. minors and cofactor

6. rotation matrices

7. classical adjoint

8. eigenvalue and eigenvector

9. trace

10. characteristic equation and characteristic polynomial

11. algebraic multiplicity

12. eigenspace and geometric multiplicity

13. eigenbasis

14. diagonalizable

15. complex conjugate

16. polar form, modulus, and argument

17. inner product for complex vectors
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18. orthogonally diagonalizable

19. adjoint, selfadjoint, and unitary

20. quadratic form

21. positive definite, positive semidefinite, and indefinite

22. principal submatrices

23. principal axes

24. singular values

25. matrix norm

26. condition number

27. Tikhonov regularization

28. truncated SVD
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Permutation: A permutation is a mapping σ of n objects, say the num-
bers 1, 2, . . . , n onto themselves. Like all functions, permutations can be
composed. Being onto, they are one-to-one and so can be inverted. For

example, consider σ =

(

1 2 3
3 1 2

)

. This means σ(1) = 3, σ(2) = 1, and

σ(3) = 2. We can also write the same permutation as σ =

(

2 3 1
1 2 3

)

. In

general, we have σ =

(

1 2 . . . n
i1 i2 . . . in

)

, where i1, . . . , in are taken from

a sequence of 1, . . . , n without repetition. This means σ(1) = i1, σ(2) =
i2, . . . , σ(n) = in.

Transposition: A transposition is a permutation that exchanges two num-

bers. For example,

(

1 2 3
3 2 1

)

and

(

1 3 2
3 1 2

)

are transpositions. Any

permutation can be expressed as a composition of transpositions although

the decomposition is not unique. For example,

(

1 2 3
2 3 1

)

=

(

1 2 3
2 1 3

)(

1 2 3
1 3 2

)

=
(

1 2 3
3 2 1

)(

1 2 3
1 3 2

)(

1 2 3
2 1 3

)(

1 2 3
3 2 1

)

.

Sign of a permutation: When we express a permutation σ as a com-
position of transpositions, the parity (even or odd) of the number of trans-
positions is unique. We define the sign or signature of σ as sgn(σ) = 1 for

even σ and sgn(σ) = −1 for odd σ. For example, sgn

(

1 2 3
1 2 3

)

= 1 and

sgn

(

1 2 3
1 3 2

)

= −1.

Determinant: For an n × n matrix A, the determinant is defined as

detA =

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1n
...

...
an1 · · · ann

∣

∣

∣

∣

∣

∣

∣

=
∑

σ sgn(σ)a1σ(1)a2σ(2) . . . anσ(n). For example,

consider the case that n = 2 and A =

[

a11 a12
a21 a22

]

. We have two permu-

tations: σ1 =

(

1 2
1 2

)

and σ2 =

(

1 2
2 1

)

. The determinant is calcu-

lated as detA = sgn(σ1)a1σ1(1)a2σ1(2)+sgn(σ2)a1σ2(1)a2σ2(2) = (+1)a11a22+
(−1)a12a21.
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Minor and cofactor: For an n×n matrix A, we obtain an (n−1)×(n−1)
matrix Aij by omitting the ith row and jth column of A. The determinant
det(Aij) is called a minor of A. Then (−1)i+j det(Aij) is called a cofactor
of A.

Rotation matrices: An orthogonal n × n matrix A with detA = 1 is
called a rotation matrix, and the linear transformation T (~x) = A~x is called
a rotation.

Classical adjoint: The classical adjoint adj(A) is the n×n matrix whose
ijth entry is a cofactor (−1)i+j det(Aji).

Eigenvalue and eigenvector: Consider an n × n matrix A. A nonzero
vector ~v ∈ R

n is called an eigenvector of A if A~v = λ~v, where λ is a scalar.
This λ is called the eigenvalue associated with the eigenvector ~v.

Trace: The sum of the diagonal entries of a square matrix A is called the
trace of A, denoted by trA.

Characteristic equation and characteristic polynomial: For an n×n
matrix A, the polynomial fA(λ) = det(A − λIn) is called the characteris-
tic polynomial of A. This polynomial of degree n is written as fA(λ) =
(−λ)n + (trA)(−λ)n−1 + · · ·+ detA. The equation fA(λ) = 0 is called the
characteristic equation.

Algebraic multiplicity: An eigenvalue λ0 of A is said to have algebraic
multiplicity k if λ0 is a root of multiplicity k of fA(λ), meaning that we can
write fA(λ) = (λ0 − λ)kg(λ) for a polynomial g(λ) with g(λ0) 6= 0.

Eigenspace and geometric multiplicity: Consider an eigenvalue λ of
an n × n matrix A. Then Eλ = ker(A − λIn) is called the eigenspace
associated with λ. The geometric multiplicity of λ is dim(Eλ). By the
rank-nullity theorem, we have dim(Eλ) = n− rank(A− λIn).

Eigenbasis: A basis of Rn consisting of eigenvectors of an n × n matrix
A is called an eigenbasis for A.
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Diagonalizable: An n×n matrix A is called diagonalizable if A is similar
to a diagonal matrix D, i.e., if there exists an invertible n×n matrix S such
that S−1AS is diagonal.

Complex conjugate The (complex) conjugate of a complex number z =
a+ ib is defined by z̄ = a− ib.

Polar form, modulus, and argument: The representation z = reiθ =
z(cos θ + i sin θ) is called the polar form of the complex number z. The
length r is called the modulus of z, denoted by |z|, and the angle θ is called
an argument of z.

Inner product for complex vectors: For vectors ~x, ~y ∈ C
n, the inner

product is defined by 〈~x, ~y〉 = x1ȳ1 + x2ȳ2 + · · ·+ xnȳn.

Orthogonally diagonalizable: A matrix A is said to be orthogonally
diagonalizable if there exists an orthogonal S such that S−1AS = STAS is
diagonal.

Adjoint, selfadjoint, and unitary: For an n × m complex matrix A,
the m× n matrix A† = ĀT is called the adjoint of A. Sometimes A∗ is used
instead of A†. An n × n complex matrix A is called selfadjoint if A† = A.
An n× n complex matrix U is called unitary if U †U = In.

Quadratic form: A function q(x1, x2, . . . , xn) from R
n to R is called a

quadratic form if it is a linear combination of functions of the form xixj (i, j
may be equal). A quadratic form can be written as q(~x) = ~x · A~x = ~xTA~x,
for a unique symmetric n× n matrix A, called the matrix of q.

Positive definite, positive semidefinite, and indefinite: Consider a
quadratic form q(~x) = ~x · A~x, where A is a symmetric n × n matrix. We
say that A is positive definite if q(~x) is positive for all nonzero ~x ∈ R

n, and
we call A positive semidefinite if q(~x) ≥ 0, for all ~x ∈ R

n. Negative definite
and negative semidefinite symmetric matrices are defined analogously. We
call A indefinite if q takes positive and negative values.
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Principal submatrices: For a symmetric n×n matrix A, let A(m) be the
m×m matrix obtained by omitting all rows and columns of A past the mth
(m = 1, 2, . . . , n). These matrices A(m) are called the principal submatrices
of A.

Principal axes: Consider a quadratic form q(~x) = ~x · A~x, where A is a
symmetric n × n matrix with n distinct eigenvalues. Then the eigenspaces
of A are called the principal axes of q.

Singular values: The singular values of an n×m matrix A are the square
roots of the eigenvalues of the symmetric m × m matrix ATA, listed with
their algebraic multiplicities. It is customary to denote the singular values by
σ1, σ2, . . . , σm and to list them in decreasing order: σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

Matrix norm: The matrix norm of A is defined as ||A|| = max
~v 6=~0

||A~v||/||~v||.

For ℓ2 norm or 2-norm, we have ||A|| = σ1. The proof is given as follows.
We write A = UΣV T , where V = [~v1 . . . ~vm] and the diagonal entries of
Σ is σ1, σ2, . . . , σm. Let us express ~v = c1~v1 + · · · + cm~vm. Then we have
||A~v|| = ||ΣV T~v|| =

√

σ2
1c

2
1 + · · ·+ σ2

mc2m ≤
√

σ2
1c

2
1 + · · ·+ σ2

1c
2
m = σ1||~v||.

For ℓ∞ norm or ∞-norm, we have ||A||∞ = maxi
∑

j |aij | (the maximum
absolute row sum). The proof is given as ||A~v||∞ = maxi |

∑

j aijvj | ≤
maxi

∑

j |aij ||vj | ≤ maxi
∑

j |aij | ||~v||∞.

Condition number: For an n × m matrix A, κ = ||A|| ||A+|| is called
the condition number of A. For n = m, ||A+|| = ||A−1||. For 2-norm, the
condition number is obtained as κ = σ1/σm.

Tikhonov regularization: Consider the linear system A~x = ~b, where
n × m (n > m) matrix A is written as A = UΣV T . In the Tikhonov
regularization with the Tikhonov regularization parameter α > 0, the reg-
ularized solution is obtained as ~x∗reg = A+

reg
~b = (ATA + α2Im)−1AT~b =

σ2

1

σ2

1
+α2

1
σ1
~v1(~u1 ·~b) + · · ·+ σ2

m

σ2
m+α2

1
σm

~vm(~um ·~b).

Truncated SVD: In the truncated SVD with the regularization param-
eter α > 0, we consider only singular values larger than α. The regularized
solution is obtained as ~x∗reg = A+

reg
~b = θ(σ1 − α) 1

σ1
~v1(~u1 ·~b) + · · · + θ(σm −

α) 1
σm

~vm(~um · ~b), where θ(·) is the step function (θ(x) = 1 for x > 0 and
θ(x) = 0 for x ≤ 0).
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Several Theorems

Theorem 6.2.1, Theorem 6.2.6, and Theorem 6.2.8

Suppose A and B are square matrices. Then det(AT ) = detA and
det(AB) = (detA)(detB). If A is invertible, then det(A−1) = 1/ detA.

Theorem 6.2.3

Elementary row operations for determinants: (i) If B is obtained from A
by dividing a row of A by a scalar k, then detB = (1/k) detA. (ii) If
B is obtained from A by a row swap, then detB = − detA. (iii) If B is
obtained from A by adding a multiple of a row of A to another row, then
detB = detA.

Theorem 7.1.5

For an n× n matrix A, “A is invertible” ⇐⇒ detA 6= 0 ⇐⇒ λ 6= 0.

Theorem 6.2.7 and Theorem 7.3.6

Suppose A is similar to B. Then, (i) fA(λ) = fB(λ). (ii) rank(A) = rank(B)
and nullity(A) = nullity(B). (iii) A and B have the same eigenvalues with
the same algebraic and geometric multiplicities. (iv) detA = detB and
trA = trB.

Theorem 6.2.10 (Laplace expansion)

Let detAij be minors of an n × n matrix A whose entries are
aij . Then the Laplace expansion down the jth column is detA =
∑n

i=1(−1)i+jaij det(Aij), and the Laplace expansion along the ith row is
detA =

∑n
j=1(−1)i+jaij det(Aij).

Theorem 6.3.1 and Theorem 7.1.2

If A is an orthogonal matrix, then detA = 1 or −1. The possible real
eignvalues are 1 and −1.

Theorem 6.3.3

If A is an n × n matrix with columns ~v1, ~v2, . . . , ~vn, then | detA| =
||~v1|| ||~v

⊥
2 || · · · ||~v

⊥
n ||.
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Theorem 6.3.4 and Theorem 6.3.6

The m-volume of the m-parallelepiped defined by vectors ~v1, ~v2, . . . , ~vm in
R
n is

√

det(ATA), where A is the n×m matrix with columns ~v1, ~v2, . . . , ~vm.
In particular, if m = n, the volume is given by | detA|.

Theorem 6.3.8 (Cramer’s rule)

Consider the linear system A~x = ~b, where A is an invertible n × n matrix.
The components xi of ~x are xi = det(A~b,i

)/ detA, where A~b,i
is the matrix

obtained by replacing the ith column of A by ~b.

Theorem 6.3.9

The inverse of an n × n matrix A is given by A−1 = adj(A)/ detA, where
adj(A) is the classical adjoint of A.

Theorem 7.2.1

A scalar λ is an eigenvalue of an n×n matrix A if and only if λ is a solution
to the characteristic equation (or the secular equation) det(A− λIn) = 0.

Theorem 7.2.8 and Theorem 7.5.5

For an n×n matrix A with (complex) eigenvalues λ1, λ2, . . . , λn, listed with
their algebraic multiplicities, detA = λ1 · · ·λn and trA = λ1 + · · ·+ λn.

Theorem 7.3.4

(i) Consider an n× matrix A. If all bases of eigenspaces of A are concate-
nated, then the resulting eigenvectors ~v1, . . . , ~vs are linearly independent
(s is the sum of the geometric multiplicities of the eigenvalues of A). (ii)
There exists an eigenbasis for an n×n matrix A if and only if the geometric
multiplicities of the eigenvalues add up to n (s = n).

Theorem 7.3.5

If an n×nmatrix A has n distinct eigenvalues, then there exists an eigenbasis
for A.

HW 8 13) (Ex. 7.3.54) (Cayley-Hamilton theorem)

Every n× n matrix A satisfies its own characteristic equation: fA(A) = 0.
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Theorem 7.4.3

(i) Matrix A is diagonalizable if and only if there exists an eigenbasis for A.
(ii) If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable.

Theorem 7.5.1 (De Moivre’s formula)

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ). Euler’s formula: eiθ = cos θ + i sin θ.

Theorem 7.5.2 (Fundamental theorem of algebra)

Any polynomial p(λ) with complex coefficients splits, that is, it can be
written as a product of linear factors p(λ) = k(λ− λ1)(λ− λ2) . . . (λ− λn),
for complex numbers λ1, λ2, . . . , λn, and k.

Theorem 7.5.4

A complex n×n matrix has n complex eigenvalues if they are counted with
their algebraic multiplicities.

Theorem 8.1.1 (Spectral theorem)

A matrix A is orthogonally diagonalizable if and only if A is symmetric. A
complex matrix A is diagonalizable with a unitary matrix U if and only if
A is selfadjoint.

Theorem 8.1.2

Consider a symmetric matrix A. If ~v1 and ~v2 are eigenvectors of A with
distinct eigenvalues λ1 and λ2, then ~v1 · ~v2 = 0.

Theorem 8.1.3

A symmetric n×n matrix A has n real eigenvalues if they are counted with
their algebraic multiplicities.

Theorem 8.2.2

Consider a quadratic form q(~x) = ~x · A~x, where A is a symmetric n × n
matrix. Let B be an orthonormal eigenbasis for A, with associated eigen-
values λ1, . . . , λn. Then, q(~x) = λ1c

2
1 + λ2c

2
2 + · · · + λnc

2
n, where ci are the

coordinates of ~x with respect to B.
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Theorem 8.2.4

A symmetric matrix A is positive definite (positive semidefinite) if and only
if all of its eigenvalues are positive (nonnegative).

Theorem 8.2.5

A symmetric matrix A is positive definite if and only if det(A(m)) > 0 for
all principal submatrices A(m) (m = 1, . . . , n).

Theorem 8.3.4

If A is an n × m matrix of rank r, then the singular values σ1, . . . , σr are
nonzero, while σr+1, . . . , σm are zero.

Theorem 8.3.5 (Singular value decomposition)

Any n×m matrix A can be written as A = UΣV T , where U is an orthogonal
n× n matrix, V is an orthogonal m×m matrix, and Σ is an n×m matrix
whose first r diagonal entries are the nonzero singular values σ1, . . . , σr of
A, and all other entries are zero (r = rank(A)). The matrix A can also be
written as A = σ1~u1~v

T
1 + · · · + σr~ur~v

T
r , where ~ui and ~vi are the columns of

U and V . If A is a complex n×m matrix, then we have A = UΣV †, where
U is a unitary n × n matrix, V is a unitary m × m matrix, and Σ is an
n×m matrix whose first r diagonal entries are the nonzero singular values
σ1, . . . , σr of A, and all other entries are zero (r = rank(A)).

(Regularization)

Consider the linear system A~x = ~b, where n × m (n > m) matrix A is
written as A = UΣV T . Here, U = [~u1 · · · ~un], V = [~v1 · · ·~vm], and the
diagonal entries of Σ are σ1, . . . , σm. In the Tikhonov regularization with
the Tikhonov regularization parameter α > 0, the regularized solution is

obtained as ~x∗reg =
σ2

1

σ2

1
+α2

1
σ1
~v1(~u1 ·~b)+ · · ·+ σ2

m

σ2
m+α2

1
σm

~vm(~um ·~b). The vector

~x∗reg minimizes ε(~x) = ||A~x − ~b||2 + ||α~x||2. In the truncated SVD with
the regularization parameter α > 0, the regularized solution is obtained as
~x∗reg = θ(σ1−α) 1

σ1
~v1(~u1 ·~b)+ · · ·+ θ(σm−α) 1

σm
~vm(~um ·~b), where θ(·) is the

step function (θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0).
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Some Proofs

First go back to the previous section and think how to prove the theorem.
Then, read the proof of the theorem below.

Proof of 7.5.1 Let us first show Euler’s formula. By Taylor series, eiθ =
1+iθ+(iθ)2/2!+(iθ)3/3!+ · · · = (1−θ2/2!+ . . . )+i(θ−θ3/3!+ . . . ). On the
other hand, cos θ = 1−θ2/2!+θ4/4!− . . . and sin θ = θ−θ3/3!+θ5/5!− . . . .
Therefore eiθ = cos θ + i sin θ. Thus we have (cos θ + i sin θ)n =

(

eiθ
)n

=
einθ = cos(nθ) + i sin(nθ).

Proof of Theorem 8.2.5 (=⇒) Let p+(A
(m)) denote the number of pos-

itive eigenvalues of A(m). Consider a subspace S such that qm(~x) = ~x ·
A(m)~x > 0 for ~x ∈ S (~x 6= ~0). First let us show that p+(A

(m)) = maxdimS.
By Theorem 8.2.2, we can write ~x · A(m)~x =

∑m
i=1 λic

2
i . We label the

eigenvalues so that λ1, . . . , λp are positive. Define the subspace S+ to con-
sist of all ~x for which cp+1 = · · · = cm = 0. Then dimS+ = p, and
~x · A(m)~x > 0 for ~x ∈ S+. Hence p+(A

(m)) ≤ maxdimS. Now suppose
that dimS > p+(A

(m)). Let us introduce P that maps ci ∈ S into S+

by setting all components ci = 0 for i > p. Note that dimS+ < dimS.
Therefore, ker(P ) 6= {~0} by the rank-nullity theorem. By definition of P ,
the first p components of a nonzero ~y ∈ ker(P ) are zero. But then we have
qm(~y) ≤ 0, which shows that qm is not positive on S. Therefore we conclude
that p+(A

(m)) = maxdimS.
Next we show that p+(A

(m)) − 1 ≤ p+(A
m−1) ≤ p+(A

(m)). Con-
sider subspaces S and S′ such that qm(~x) > 0 for ~x ∈ S (~x 6= ~0) and
qm−1(~x

′) > 0 for ~x′ ∈ S′ (~x′ 6= ~0). Define S as the subspace of Rm con-
sisting of vectors ~x whose first component is zero, and the vector ~x′ formed
by the remaining m − 1 components belonging to S′. Then for ~x ∈ S, we
have ~x · A(m)~x = ~x′ · A(m−1)~x′. Therefore, qm−1(~x

′) > 0 ⇒ qm(~x) > 0.
We obtain p+(A

(m)) ≥ dimS = dimS′ = p+(A
(m−1)). Thus the right-

hand side p+(A
m−1) ≤ p+(A

(m)) was shown. To show the left-hand side
p+(A

(m)) − 1 ≤ p+(A
m−1), we proceed in reverse. We start with a sub-

space S of Rm. Denote by S′′ the subspace of S consisting of ~x whose first
component is zero. Hence dimS′′ ≥ dimS − 1. Denote by S′ the sub-
space of Rm−1 consisting of ~x′ obtained by removing the first component of
~x ∈ S′′. Since the component removed in zero, ~x · A(m)~x = ~x′ · A(m−1)~x′

holds for ~x ∈ S′′. Therefore, qm(~x) > 0 ⇒ qm−1(~x
′) > 0. We conclude

that p+(A
m−1) ≥ dimS′ = dimS′′ ≥ dimS − 1 = p+(A

(m)) − 1. In par-
ticular, if the eigenvalues of A(m) are all positive, i.e., p+(A

(m)) = m, then
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p+(A
(m−1)) = m − 1. That is, if the eigenvalues of A = A(n) are positive,

eigenvalues of A(n−1), . . . , A(1) are all positive.
According to Theorem 8.2.4, the eigenvalues of a positive definite matrix

is positive. Thus, A(m) (m = 1, . . . , n) are all positive definite. According to
Theorem 7.2.8, detA(m) is the product of the eigenvalues of A(m). Therefore,
if A is positive definite, then det(A(m)) > 0 for m = 1, . . . , n.

(⇐=)We note that, by replacingA with−A in p+(A
(m))−1 ≤ p+(A

m−1) ≤
p+(A

(m)), we see that p−(A
(m)) − 1 ≤ p−(A

m−1) ≤ p−(A
(m)) also holds,

where p−(A
(m)) denotes the number of negative eigenvalues of A(m).

If detA(m) > 0 for all m = 1, . . . , n, then each A(m) has an even number
of negative eigenvalues (use Theorem 7.2.8). However, using the relation
p−(A

(m))− 1 ≤ p−(A
m−1) ≤ p−(A

(m)), we see that the numbers of negative
eigenvalues of A(m) and A(m−1) differ at most by 1. Thus A(m) has as
many negative eigenvalues as A(m−1). Now A(1) is a 1×1 matrix and has no
negative eigenvalue. Therefore all A(2), A(3), . . . have no negative eigenvalue.
In particular, the eigenvalues of A(n) = A are all positive. This means that
A is positive definite (see Theorem 8.2.4).

Proof of Regularization In the Tikhonov regularization, we modify
the least-squares solution as ~x∗reg = A+

reg
~b = (ATA + α2Im)−1AT~b. Us-

ing the SVD A = UΣV T , we obtain ~x∗reg = V (ΣTΣ + α2Im)−1ΣTUT~b =

[~v1 · · ·~vm]









1
σ2

1
+α2

. . .
1

σ2
m+α2









ΣT [~u1 · · · ~un]
T~b =

∑m
i=1

σ2

i

σ2

i
+α2

1
σi
~vi(~ui ·~b).

Note that 0 < σ2

σ2+α2 < 1 for 0 < σ < ∞.

Let us write ~x = c1~v1 + · · ·+ cm~vm. Then we obtain ε(~x) =
∑m

i=1(σ
2
i +

α2)c2i − 2
∑m

i=1 σi(~ui ·
~b)ci + ||~b||2. To minimize ε, we determine ci such that

∂ε
∂ci

= 0. We obtain ci = [σi/(σ
2
i + α2)]~ui ·~b. Thus ~x

∗
reg minimizes ε.

For the truncated SVD with the regularization parameter α > 0, we
choose k (< m) such that σk > α and σk+1 ≤ α. Without regularization, the
least-squares solution is written as ~x∗ = V (ΣTΣ)−1ΣTUT~b. In the truncated
SVD, we replace (ΣTΣ)−1 with the m × m matrix in which only the first
k diagonal entries 1/σ2

1, . . . , 1/σ
2
k are nonzero and all other entries are zero.

Then the regularized solution is obtained as ~x∗reg = A+
reg
~b =

∑k
i=1

1
σi
~vi(~ui ·~b).

By using the step function, we have ~x∗reg = θ(σ1−α) 1
σ1
~v1(~u1 ·~b)+· · ·+θ(σm−

α) 1
σm

~vm(~um ·~b).
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More Problems

Go over homework problems. Here are more problems if you need. Solutions
can be found in the textbook.

Chapter 6

6.1.1, 6.1.3, 6.1.5, 6.1.7, 6.1.9, 6.1.31, 6.1.33, 6.1.35, 6.1.37, 6.1.39, 6.1.41,
6.2.1, 6.2.3, 6.2.5, 6.2.7, 6.2.9, 6.3.23, 6.3.33

Chapter 7

7.1.9, 7.1.11, 7.1.13, 7.1.39, 7.1.41, 7.2.1, 7.2.3, 7.2.5, 7.2.7, 7.2.9, 7.2.11,
7.2.13, 7.3.1, 7.3.3, 7.3.5, 7.3.7, 7.3.9, 7.3.11, 7.3.13, 7.3.15, 7.3.17, 7.4.1,
7.4.3, 7.4.5, 7.4.7, 7.4.9, 7.4.11, 7.4.13, 7.4.15, 7.4.17, 7.4.19, 7.4.31, 7.4.33,
7.5.1, 7.5.3, 7.5.5

Chapter 8

8.1.1, 8.1.3, 8.1.5, 8.1.7, 8.1.9, 8.1.11, 8.2.5, 8.2.7, 8.2.23, 8.2.25, 8.3.1, 8.3.7,
8.3.9, 8.3.11, 8.3.13, 8.3.15, 8.3.17, 8.3.19, 8.3.25, 8.3.27, 8.3.29, 8.3.31,
8.3.33, 8.3.35
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