- 1 (15 pts.) Which of the following statements are true? Put a (T) before the correct ones and an (F) before the wrong ones. (No justification is required.)

 - (\sqsubset) If A and B are both orthogonal $n \times n$ matrices, then AB = BA. e.g. $\underline{n=2}$. Yellectins
 - (\int) The set of all smooth functions f(x) such that $\int_{-1}^{1} f(x) dx = 0$ is a linear space.
 - (\digamma) The map $T(f) = \begin{pmatrix} f(0) & f(1) \\ f(2) & f(3) \end{pmatrix}$ is an isomorphism from P_4 to $\mathbb{R}^{2 \times 2}$. $\dim P_4 = \mathcal{F} > \dim \mathbb{R}^{2 \times 2} = \mathcal{F}$
 - (\uparrow) If the entries of two vectors \vec{v} and \vec{w} are all negative, then the angle between \vec{v} and \vec{w} must be an acute angle.

2 (15 pts.) Fill in the blanks. (No justification is required. No partial credit.)

(a) The trace of the matrix
$$\begin{pmatrix} 3 & 4 & 5 \\ 12 & 3 & 14 \\ 0 & 0 & 1 \end{pmatrix}$$
 is $\frac{7}{}$.

- (b) Let $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ be orthonormal vectors in \mathbb{R}^{15} . Then the length of the vector $v = \vec{v}_1 \vec{v}_2 + 2\vec{v}_3 2\vec{v}_4$ is ______.
- (c) The dimension of the space of "all polynomials in \mathcal{P}_3 that are also odd functions" is 2.
- (d) Under the basis

$$\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$$
 of $\mathbb{R}^{2 \times 2}$, the coordinate vector of the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is $\begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$.

(e) Write down a 4×4 orthogonal matrix that is not the identity matrix

3 (15 pts.) Let
$$V$$
 be the subset of $\mathbb{R}^{3\times 3}$ consisting of all 3×3 matrices A such that $A^T=-A$.

- (a) Argue that V is a linear subspace of P_3 .
- (b) Find a basis of V.
- (c) Consider the linear transformation $T: V \to V$ defined by

$$T(A) = S^T A S,$$

where
$$S$$
 is the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ -1 & -1 & 0 \end{pmatrix}$. Find the matrix of T with

respect to the basis you get in

respect to the basis you get in part (b).

(A)
$$A^{T} = -A$$
, $B^{T} = -B$ \Rightarrow $(\alpha A + \beta B)^{T} = \lambda A^{T} + \beta B^{T} = -\alpha A - \beta B = -(\alpha A + \beta B)$.

(b) $A^{T} = -A$ \Rightarrow $A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} = a \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ -c & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 & 1 \\ 0 & -c & 0 \\ 0 & -c & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 1 \\ 0 & -c & 0 \\ 0 & -c & 0 \end{pmatrix}$

(c) $A = \begin{pmatrix} 0 & 1 & 0 \\ -a & 0 & c \\ -c & 0 & 0 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & 0 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 1 \\ -c & 0 & c \\ -c & 0 & c \end{pmatrix}$, A

$$\begin{array}{c}
\Rightarrow \left(7(A_{2})\right)_{\mathcal{B}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\
7(A_{3}) = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 2 \\ -1 & 2 & 0 \end{pmatrix} = A_{1} + 2A_{2} + 2A_{3}$$

$$\Rightarrow \left(7(A_{3})\right)_{\mathcal{B}} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

$$\mathcal{B}$$
- Modrix is $\begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 4 & 0 & 2 \end{pmatrix}$.

4 (15 pts.) (a) Find the least square solution to the system
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}.$$

- (b) Find a linear function of the form $f(t) = c_0 + c_1 t$ that best fits the data (0,1), (1,2), (2,3), (3,5).
- (c) Find the matrix of the orthogonal projection onto the subspace of \mathbb{R}^4

spanned by the vectors
$$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

(a)
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 6 & 14 \end{pmatrix}_{\frac{3}{7}}$$

$$\begin{pmatrix} 4 & 6 \\ 6 & 14 \end{pmatrix}^{-1} = \frac{1}{56-36} \begin{pmatrix} 14 & -4 \\ -6 & 4 \end{pmatrix} = \frac{1}{70} \begin{pmatrix} 7 & -3 \\ -3 & 2 \end{pmatrix}$$

$$\overrightarrow{A}^{*} = \frac{1}{70} \begin{pmatrix} 7 & -3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 & 3 \end{pmatrix} = \frac{1}{70} \begin{pmatrix} 7 & -3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 11 \\ 23 \end{pmatrix} = \frac{1}{70} \begin{pmatrix} 8 \\ 13 \end{pmatrix}$$

(b) Same as (a)!

$$f(t) = \frac{3}{10} + \frac{13}{10}t$$

$$A (A^{7}A)^{-1}A^{7} = \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \cdot \frac{1}{70} \begin{pmatrix} 7 & -3 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

$$= \frac{1}{70} \begin{pmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 7 & 4 & 1 & -2 \\ -3 & -1 & 1 & 3 \end{pmatrix}$$

$$= \frac{1}{70} \begin{pmatrix} 7 & 4 & 1 & -2 \\ 4 & 3 & 2 & 1 \\ 1 & 2 & 3 & 4 \\ -2 & 1 & 4 & 7 \end{pmatrix}$$

5 (20 pts.) Let
$$V = \text{Im}(A)$$
, where $A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

- (a) Find an orthonormal basis of V.
- (b) Find the QR decomposition of A.
- (c) Find the orthogonal projection of $\vec{v} = (1 \ 2 \ 3 \ 4)^T$ onto V.
- (d) Find an orthonormal basis of V^{\perp} .

Sol: (a) Same as what we did in class, we will get

$$\vec{\mathcal{U}}_{i} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{\mathcal{U}}_{2} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{\mathcal{U}}_{3} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

(6).
$$A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

(c)
$$f_{n}(\vec{v}) = \vec{v}(\vec{u}, \vec{v})\vec{u}, + (\vec{u}_{z} \cdot \vec{v})\vec{u}_{z} + (\vec{u}_{z} \cdot \vec{v})\vec{u}_{z}$$

$$= 5 \vec{u}_{z} + 2 \vec{u}_{z} + 0 \vec{u}_{z}$$

$$(d) \overline{\mathcal{U}}_{1} = \overline{\mathcal{U}}_{1} = \overline{\mathcal{U}}_{2} = \overline{\mathcal{U}}_{3} = \overline{\mathcal{U}}_{4} = \overline{\mathcal{U}}_{4$$

Let V be an inner product space, and X_1, X_2, X_3 three elements in V. 6 (20 pts.) Suppose we know that $\langle X_i, X_j \rangle$ is the entry a_{ij} of the matrix

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 50 & 8 \\ 0 & 8 & 4 \end{pmatrix}.$$

Use this information to answer the following questions.

- (a) Find $|X_1|$.
- (b) Find the angle enclosed by X_2 and X_3 .
- (c) Find $|X_1 + X_2|$.
- (d) Find $\operatorname{Proj}_V(X_3)$, where $V = \operatorname{span}(X_1, X_2)$.

For each of the following matrices B, there is no way to find elements X_1, X_2, X_3 so that the entry b_{ij} is $\langle X_i, X_j \rangle$. Explain why (case by case).

(e)
$$B = \begin{pmatrix} -1 & 3 & 0 \\ 3 & 50 & 8 \\ 0 & 8 & 4 \end{pmatrix}$$
 (f) $\begin{pmatrix} 1 & 3 & 0 \\ 3 & 5 & 8 \\ 0 & 8 & 4 \end{pmatrix}$ (g) $\begin{pmatrix} 1 & 3 & 1 \\ 3 & 50 & 8 \\ 0 & 8 & 4 \end{pmatrix}$

(a)
$$|X_1| = \sqrt{\langle X_1, X_1 \rangle} = 1$$

(6)
$$\frac{(X_1, X_1)}{|X_1| |X_1|} = \frac{8}{\sqrt{50}} \frac{4}{\sqrt{5}} = 0 = \arccos \frac{4}{\sqrt{50}}$$

(c)
$$|X_1+X_2| = \sqrt{|X_1|^2 + 2\langle X_1, X_2 \rangle + |X_2|^2} = \sqrt{1+2\cdot 3+50} = \sqrt{57}$$

(d) Represent bessis of
$$V$$
.

$$Y_{i} = \frac{X_{i}}{|X_{i}|} = X_{i}, \quad Y_{2} = X_{2} - \langle Y_{i}, X_{2} \rangle Y_{i} = X_{2} - 3X_{1}, \quad |Y_{2}^{(4)}| = \sqrt{|X_{2} - 3X_{i}|^{2}}$$

$$\Rightarrow Y_{i} = \frac{1}{|X_{1}|} (X_{2} - 3X_{i})$$

$$= \sqrt{41}$$

$$\Rightarrow X_{3} \times X_{1} + \langle Y_{2}, X_{3} \rangle Y_{2} = 0 \cdot Y_{1} + \frac{1}{41} \langle X_{2} - 3X_{1}, X_{3} \rangle (X_{2} - 3X_{1})$$