1 (15 pts.) Which of the following statements are true? Put a (T) before the correct ones and an (F) before the wrong ones. (No justification is required.)
(T) The inverse of an orthogonal matrix is still an orthogonal matrix.
(F) If A and B are both $n \times n$ symmetric matrices, so is $A B$.
e.g. $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$
(F) The set of all polynomials $p(x)$ of degree no more than 5 such that $p^{\prime}(0) \neq 0$ is a linear space.

0 is not in this set.
(T) The linear transformation $T(A)=A\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$ is an isomorphism from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2} . \quad T^{-1}(A)=A\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)^{-1}$.
(T) For any 2×2 matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
$\operatorname{det}\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)=a d-\dot{c} b=a d-b c=\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

2 ($\mathbf{1 5}$ pts.) Fill in the blanks. (No justification is required. No partial credit.)
(a) The trace of the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 4 \\ 8 & 7 & 6\end{array}\right)$ is 10 .
(b) The length of the vector $\left(\begin{array}{l}2 \\ 0 \\ 1 \\ 2\end{array}\right)$ is 3
(c) The dimension of the space of all symmetric 3×3 matrices is \qquad 6
$\left(\begin{array}{lll}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}\end{array}\right)\left(\begin{array}{lll}b & d & e \\ c & e & f\end{array}\right)$
(d) Suppose $A=\left(\begin{array}{ccc}a & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ b & c & -\frac{1}{\sqrt{2}}\end{array}\right)$ is an orthogonal matrix, then the
row $1+$ row 2
$\left.\frac{1}{\sqrt{3}} a+\frac{1}{\sqrt{3}} \frac{1}{6}+\frac{1}{\sqrt{3}} \frac{1}{\sqrt{6}}=0 \Rightarrow a=-\frac{2}{\sqrt{6}} \quad \begin{array}{ccc}b & c & -\frac{1}{\sqrt{2}}\end{array}\right) \quad$ values of the missing entries are $a=-\frac{2}{\sqrt{6}}, b=0 \quad, c=\frac{1}{\sqrt{2}}$.

colone $2+$ chm en 3

$\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}+\frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}}+c \cdot\left(-\frac{1}{\sqrt{2}}\right)=0 \Rightarrow c=\frac{1}{\sqrt{2}}$
Under the basis $\mathcal{B}=\left(1, x-1, x^{2}-1, x^{3}-1, x^{4}-1\right)$ of \mathcal{P}_{4}, the coordinate
Yow 3 length $=1$
$b^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(-\frac{1}{\sqrt{2}}\right)^{2}=1 \Rightarrow b=0$

$$
1+x+x^{2}+x^{3}+x^{4}
$$

$$
=5+(x-1)+\left(x^{2}-1\right)+\left(x^{3}-1\right)+\left(x^{4}-1\right)
$$

3 (15 pts .) Let V be the subset of \mathcal{P}_{3} consisting of all polynomials $p(x)$ of degree no more than 3 that satisfy the relation $p(1)=p(-1)$.
(a) Argue that V is a linear subspace of \mathcal{P}_{3}.
(b) Find a basis of V.
(c) Consider the linear transformation $T: V \rightarrow V$ defined by

$$
T(p(x))=p(-x)
$$

Find the matrix of T with respect to the basis you get in part (b).
(a)

$$
\text { If } \begin{aligned}
& p(x)=a x^{3}+b x^{2}+c x+d \in V \mid \\
&\left.\tilde{p}(x)=\tilde{a} x^{3}+\tilde{b} x^{2}+\tilde{c} x+d \in \mathcal{d} \in(x)+\beta q(x)=(\alpha a+\beta \tilde{a}) x^{3}+(\alpha b+\beta \tilde{b}) x^{2}+\alpha c+\beta \tilde{c}\right) x+(\alpha d+\beta d) \\
& \text { legree no more then } 3 \\
& \alpha(p(1)+\beta q(1)=\alpha p(-1)+\beta q(-1) \\
& \Rightarrow \alpha p(x)+\beta q(x) \in V .
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \left.p(x)=a x^{3}+b x^{2}+c x+d\right) \Rightarrow a+b+c+d=-a+b-c+d \Rightarrow a+c=0 \Rightarrow c=-a . \\
& p(1)=p(-1) \\
& \therefore p(x)=a x^{3}+b x^{2}-a x+d=a\left(x^{3}-x\right)+b x^{2}+d \cdot 1
\end{aligned}
$$

Basis: $x^{3}-x, x^{2}, 1$.
(c).

$$
\begin{aligned}
& T\left(x^{3}-x\right)=(-x)^{3}-(-x)=-x^{3}+x=-\left(x^{3}-x\right) \Rightarrow\left[T\left(x^{3}-x\right)\right]_{\mathbb{B}}=\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \\
& T\left(x^{2}\right)=(-x)^{2}=x^{2} \Rightarrow\left[T\left(x^{2}\right)\right]_{B}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& T(1)=1 \Rightarrow[T(1)]_{B}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

\Rightarrow Matrix of T is

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

4 (15 pts.) Consider the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} in \mathbb{R}^{4}. Suppose we know that $\vec{v}_{i} \cdot \vec{v}_{j}$ is the entry $a_{i j}$ of the matrix $A=\left(\begin{array}{ccc}10 & 10 & 3 \\ 10 & 19 & 3 \\ 3 & 3 & 2\end{array}\right)$. Use this information to answer the following questions.
(a) Find $\left|\vec{v}_{2}\right|$.
(b) Find the cosine of the angle enclosed by \vec{v}_{1} and \vec{v}_{3}.
(c) Find $\left|\vec{v}_{1}-\vec{v}_{2}\right|$.
(d) Find $\operatorname{Proj}_{V}\left(\vec{v}_{3}\right)$, where $V=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$.
(e) Find an orthonormal basis of $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$. The vectors should be expressed as linear combinations of \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
(a) $\left|\vec{v}_{2}\right|=\sqrt{\vec{v}_{2} \cdot \vec{v}_{2}}=\sqrt{19}$
(6) $\cos \theta=\frac{\vec{v}_{1} \cdot \vec{v}_{3}}{\left|\overrightarrow{v_{1}}\right| \cdot\left|\overrightarrow{v_{3}}\right|}=\frac{\overrightarrow{v_{1}} \cdot \overrightarrow{v_{3}}}{\sqrt{\vec{r}_{1} \cdot \vec{v}_{1}} \sqrt{\vec{v}_{3} \cdot \vec{v}_{3}}}=\frac{3}{\sqrt{10} \sqrt{2}}=\frac{3}{\sqrt{20}}$
(c) $\left|\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right|=\sqrt{\left(\vec{v}_{1} \cdot \overrightarrow{v_{2}}\right) \cdot\left(\overrightarrow{v_{1}}-\overrightarrow{v_{2}}\right)}=\sqrt{\sqrt[v_{1}]{\rightharpoonup_{1}}-\overrightarrow{v_{1}} \cdot \overrightarrow{v_{2}}-\overrightarrow{v_{2}} \cdot \overrightarrow{v_{1}}+\vec{v}_{2} \cdot \vec{v}_{2}}=\sqrt{10-10-10+19}=\sqrt{9}=3$.
(d) $\vec{u}_{1}=\frac{\overrightarrow{v_{1}}}{\mid \vec{v}_{1}}=\frac{1}{\sqrt{10}} \vec{v}_{1}$

$$
\begin{aligned}
& \left.\vec{v}_{2}^{(H)}=\vec{v}_{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right) \vec{u}_{2}=\vec{v}_{2}-\frac{1}{\sqrt{v_{2}}}\left(\vec{v}_{1} \cdot \vec{v}_{2}\right) \frac{1}{\sqrt{10}} \vec{v}_{1}=\vec{v}_{2}-\frac{1}{10} 10 \vec{v}_{1}=\vec{v}_{2}-\vec{v}_{1} \right\rvert\, \Rightarrow \vec{u}_{2}=\frac{1}{3}\left(\vec{u}_{2}-\vec{v}_{1}\right) . \\
& \left|\vec{u}_{2}^{(\mu)}\right|=\left|\vec{u}_{2}-\vec{v}_{1}\right|=\left|\vec{v}_{1}-\vec{u}_{1}\right|=3
\end{aligned}
$$

(e) We already have $\vec{u}_{1}=\frac{1}{\sqrt{10}} \vec{v}_{1}, \quad \vec{u}_{2}=\frac{1}{3}\left(\vec{v}_{2}-\vec{u}\right)$

$$
\begin{aligned}
& \vec{u}_{3}^{(L)}=\vec{v}_{3}-\beta_{v_{v}}\left(\vec{v}_{3}\right)=\vec{v}_{3}-\frac{3}{10} \vec{v}_{1} \\
& \left|\vec{v}_{3}^{(4)}\right|=\sqrt{\left(\vec{v}_{3}-\frac{3}{10} \vec{v}_{1}\right) \cdot\left(\vec{v}_{3}-\frac{3}{10} \vec{v}_{1}\right)}=\sqrt{\tilde{v}_{3} \cdot \overrightarrow{v_{3}}-\frac{3}{10} \cdot \overrightarrow{u_{3}} \cdot \overrightarrow{v_{1}}-\frac{3}{10} \vec{v}_{1} \cdot \vec{v}_{3}+\frac{9}{100} \vec{v}_{1} \cdot \vec{v}_{1}} \\
& =\sqrt{2-\frac{3}{10} 3-\frac{3}{10} 3+\frac{9}{100}}=\sqrt{2-\frac{18}{10}+\frac{9}{10}}=\sqrt{\frac{1}{10}} \\
& \therefore \vec{u}_{3}=\frac{1}{\sqrt{\frac{1}{10}}}\left(\vec{v}_{3}-\frac{3}{1} \vec{v}_{1}\right) .
\end{aligned}
$$

5 (20 pts.) Let $V=\operatorname{Im}(A)$, where $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 0\end{array}\right)$.
(a) Find an orthonormal basis of V.
(b) Find the $Q R$ decomposition of A.
(c) Find the matrix of the orthogonal projection map Proj_{V}.
(d) Find an orthonormal basis of V^{\perp}.
(a)
(b). $Q R$:

$$
\text { O.N. basis: } B=\frac{1}{3}\left(\begin{array}{c}
2 \\
0 \\
1 \\
2
\end{array}\right), \frac{1}{3 \sqrt{2}}\left(\begin{array}{c}
1 \\
3 \\
2 \\
-2
\end{array}\right), \quad \frac{\sqrt{2}}{6}\left(\begin{array}{c}
-1 \\
3 \\
-2 \\
2
\end{array}\right)=\frac{1}{3 \sqrt{2}}\left(\begin{array}{c}
-1 \\
3 \\
-2 \\
2
\end{array}\right)
$$

$$
A=\left(\begin{array}{ccc}
\frac{2}{3} & \frac{1}{3 \sqrt{2}} & \frac{-1}{3 \sqrt{2}} \\
0 & \frac{3}{3 \sqrt{2}} & \frac{3}{3 \sqrt{2}} \\
\frac{1}{3} & \frac{2}{3 \sqrt{2}} & \frac{-2}{3 \sqrt{2}} \\
\frac{2}{3} & \frac{-2}{3 \sqrt{2}} & \frac{2}{3 \sqrt{2}}
\end{array}\right)\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & \sqrt{2} & \frac{3}{\sqrt{2}} \\
0 & 0 & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

(C)

RTE:

$$
\begin{aligned}
& \text { matrix of fin } V=Q Q^{\top}=\frac{1}{3 \sqrt{2}} \frac{1}{3 \sqrt{2}}\left(\begin{array}{ccc}
2 \sqrt{2} & 1 & -1 \\
0 & 3 & 3 \\
\sqrt{2} & 2 & -2 \\
2 \sqrt{2} & -2 & 2
\end{array}\right)\left(\begin{array}{cccc}
2 \sqrt{2} & 0 & \sqrt{2} & 4 \sqrt{2} \\
1 & 3 & 2 & -2 \\
-1 & 3 & -2 & 2
\end{array}\right)=\frac{1}{18}\left(\begin{array}{ccc}
10 & 0 & 8 \\
0 & 18 & 0 \\
\hline & 0 \\
0 & 10 & -4 \\
4 & 0 & -4 \\
\sin V=4-3=16
\end{array}\right) \\
& Q^{\perp}=(\ln A)^{\perp}=\operatorname{ker}\left(A^{\top}\right) \\
& \left(\begin{array}{cccc}
2 & 0 & 1 & 2 \\
1 & 1 & 1 & 0 \\
1 & 2 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 2 & 1 & 0 \\
2 & 0 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -2
\end{array}\right)\left(\begin{array}{ccc}
\frac{5}{9} & 0 & \frac{4}{9} \\
0 & \frac{2}{9} \\
0 & 0 & 0 \\
\frac{4}{9} & 0 & \frac{5}{9} \\
\frac{2}{9} & \frac{-2}{9} \\
0 & \frac{-2}{9} & \frac{8}{9}
\end{array}\right) \\
& \Rightarrow \vec{x}=t\left(\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right) .\left|\left(\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right)\right|=3 . \Rightarrow \vec{U}_{4}=\frac{1}{3}\left(\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right)^{8}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}_{1}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
2
\end{array}\right),\left|\vec{v}_{1}\right|=3 \Rightarrow \vec{u}_{1}=\frac{1}{3}\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right), \quad \vec{u}_{1} \cdot \vec{v}_{2}=1, \quad \vec{u}_{1} \cdot \vec{v}_{3}=1 \\
& \vec{v}_{2}^{(\perp)}=\vec{v}_{2}-\left(\vec{v}_{2} \cdot \vec{u}_{1}\right) \overrightarrow{u_{1}}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)-\frac{1}{3}\left(\begin{array}{l}
2 \\
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{3} \\
1 \\
\frac{2}{3} \\
-\frac{2}{3}
\end{array}\right)=\frac{1}{3}\left(\begin{array}{c}
1 \\
3 \\
2 \\
-2
\end{array}\right), \quad\left|\vec{v}_{2}^{(\perp)}\right|=\frac{1}{3} \sqrt{1+9+4+4}=\sqrt{2} \\
& \Rightarrow \vec{u}_{2}=\frac{1}{3 \sqrt{2}}\left(\begin{array}{c}
1 \\
3 \\
2 \\
-2
\end{array}\right), \quad \vec{u}_{2} \cdot \vec{v}_{3}=\frac{9}{3 \sqrt{2}}=\frac{3}{\sqrt{2}} \\
& \vec{v}_{3}(-1)=\vec{v}_{3}-\left(\vec{u}_{1} \cdot \vec{v}_{3}\right) \vec{u}_{1}-\left(\vec{u}_{2} \cdot \vec{v}_{3}\right) \vec{u}_{2}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right)-\frac{1}{3}\left(\begin{array}{l}
2 \\
0 \\
1 \\
2
\end{array}\right)-\frac{1}{24} 4\left(\begin{array}{c}
1 \\
3 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-\frac{1}{6} \\
\frac{1}{2} \\
-\frac{1}{3} \\
\frac{1}{3}
\end{array}\right)=\frac{1}{6}\left(\begin{array}{c}
-1 \\
3 \\
-2 \\
2
\end{array}\right) \\
& \left|\vec{U}_{3}^{(L)}\right|=\frac{1}{6} \sqrt{1+9+4+4}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}} \Rightarrow \vec{U}_{3}=\frac{\sqrt{2}}{6}\left(\begin{array}{c}
-1 \\
3 \\
-2 \\
2
\end{array}\right)
\end{aligned}
$$

6 (20 pts.) We define an inner product structure on $\mathbb{R}^{2 \times 2}$ by the formula

$$
\langle A, B\rangle=\operatorname{Trace}\left(A^{T}\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) B\right)
$$

(a) For $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, calculate $\langle A, A\rangle$.
(b) Use part (a) to check that $\langle A, A\rangle>0$ for $A \neq 0$.
(c) Find the angle between the matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
(d) Find an orthonormal basis of the subspace V of $\mathbb{R}^{2 \times 2}$ that contains all matrices of the form $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) . \quad(a+c)^{2}+c^{2}$
(a) $\begin{aligned} \operatorname{Tr}\left(\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) & =\operatorname{Tr}\left(\left(\begin{array}{ll}a+c & a+2 c \\ b+d & b+2 d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\operatorname{Tr}\left(\begin{array}{cc}a^{2}+a c+a c+2 c^{2} & \text { y } \\ * & b^{2}+b d+b d+2 d^{2}\end{array}\right) \\ & =(a+c)^{2}+(6+d)^{2}+c^{2} d^{2}\end{aligned}$

$$
=(a+c)^{2}+(b+d)^{2}+c^{2}+d^{2}
$$

(b) If $A \neq 0$, then $\left.(a+c)^{2}+(b+d)^{2}+c^{2}+d^{2}\right\rangle 0$, ie. $\left.\langle A, A\rangle\right\rangle 0$.
(c) $\left|\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=\sqrt{(1+0)^{2}+(0+1)^{2}+0^{2}+1^{2}}=\sqrt{3}$

$$
\left|\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right|=\sqrt{\left(0+(-1)^{2}+(1+0)^{2}+(-1)^{2}+0^{2}\right.}=\sqrt{3}
$$

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle=T\left(\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)=F\left(\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)\right)=T_{0}\left(\begin{array}{ll}
-1 & 1 \\
1 & 1
\end{array}\right)=0 .
$$

$\Rightarrow \theta=\frac{\pi}{2}$.
(d). A basis of $V:\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ -1 & 0\end{array}\right)$.

Since $\binom{10}{0} \perp\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, we get an on. basis $\frac{1}{\sqrt{3}}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), ~ \frac{\perp}{\sqrt{3}}\left(\begin{array}{cc}0 & 1 \\ + & 0\end{array}\right)$.

