MATH 419 SECTION 001
 FINAL

December 20, 2012, Instructor: Manabu Machida

Name: \qquad

- To receive full credit you must show all your work.
- Theorems listed at the end can be used without proof.
- Both sides of a US letter size paper $\left(8.5^{\prime \prime} \times 11^{\prime \prime}\right)$ with notes is OK.
- NO CALCULATOR, BOOKS, or OTHER NOTES.

Problem	Points	Score
1	10	
2	14	
3	12	
4	6	
5	6	
6	12	
7	20	
TOTAL	80	

Problem 1. (10 points) Find the rank of the matrices.
(a) $\left[\begin{array}{lllll}1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$,
(b) $\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4\end{array}\right]$,
(c) $\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$.

Solution (a) [3] 3, (b) [3] 1, (c) [4] 2.

Problem 2. (14 points)
(a) Compute A^{6} for $A=\left[\begin{array}{cc}5 & -3 \sqrt{2} \\ 3 \sqrt{2} & -4\end{array}\right]$.
(b) Compute $A^{4}-10 A^{3}+21 A^{2}+21 A+4$ for $A=\left[\begin{array}{cc}1.7 & 7.61 \\ 1 & 3.3\end{array}\right]$.

Solution (a) [7] Note that

$$
A\left[\begin{array}{r}
\sqrt{2} \\
1
\end{array}\right]=2\left[\begin{array}{r}
\sqrt{2} \\
1
\end{array}\right], \quad A\left[\begin{array}{r}
1 \\
\sqrt{2}
\end{array}\right]=-\left[\begin{array}{r}
1 \\
\sqrt{2}
\end{array}\right] .
$$

We have

$$
A^{6}=\left[\begin{array}{rr}
\sqrt{2} & 1 \\
1 & \sqrt{2}
\end{array}\right]\left[\begin{array}{rr}
2^{6} & 0 \\
0 & (-1)^{6}
\end{array}\right]\left[\begin{array}{rr}
\sqrt{2} & 1 \\
1 & \sqrt{2}
\end{array}\right]^{-1}=\left[\begin{array}{rr}
127 & -63 \sqrt{2} \\
63 \sqrt{2} & -62
\end{array}\right]
$$

(b) [7] By the Cayley-Hamilton theorem, $A^{2}-(\operatorname{tr} A) A+\operatorname{det} A=A^{2}-5 A-2 I_{2}=0$. Thus,

$$
A^{4}-10 A^{3}+21 A^{2}+21 A+4=\left(A^{2}-5 A-2 I_{n}\right)^{2}+A=A=\left[\begin{array}{cc}
1.7 & 7.61 \\
1 & 3.3
\end{array}\right]
$$

(continued)

Problem 3. (12 points) Let V be the linear space spanned by e^{x} and e^{-x}, with the bases $\mathcal{A}=$ $\left(e^{x}, e^{-x}\right)$ and $\mathcal{B}=\left(e^{x}+e^{-x}, e^{x}-e^{-x}\right)$. Consider the linear transformation $T(f)=f^{\prime}$ from V to V.
(a) Find the change of basis matrix $S_{\mathcal{B} \rightarrow \mathcal{A}}$.
(b) Find the \mathcal{A}-matrix A of T or the \mathcal{B}-matrix B of T (Choose one of them).

Solution (a) [6] The change of basis matrix satisfies $[f]_{\mathcal{A}}=S_{\mathcal{B} \rightarrow \mathcal{A}}[f]_{\mathcal{B}}$. We obtain

$$
S_{\mathcal{B} \rightarrow \mathcal{A}}=\left[\begin{array}{ll}
{\left[e^{x}+e^{-x}\right]_{\mathcal{A}}} & {\left[e^{x}-e^{-x}\right]_{\mathcal{A}}}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

(b) [6] Note that $T\left(e^{x}\right)=e^{x}$ and $T\left(e^{-x}\right)=-e^{-x}$. Thus,

$$
A=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Note that $T\left(e^{x}+e^{-x}\right)=e^{x}-e^{-x}$ and $T\left(e^{x}-e^{-x}\right)=e^{x}+e^{-x}$. Thus,

$$
B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

The matrices A and B are related as $B=S_{\mathcal{B} \rightarrow \mathcal{A}}^{-1} A S_{\mathcal{B} \rightarrow \mathcal{A}}$.
(continued)

Problem 4. (6 points) Find the determinant of the matrix $\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20\end{array}\right]$.

Solution The determinant is 1 .

Problem 5. (6 points) Express $\cos (3 \theta)$ and $\sin (3 \theta)$ in terms of $\cos \theta$ and $\sin \theta$.

Solution

$$
\begin{aligned}
\cos 3 \theta+i \sin 3 \theta & =(\cos \theta+i \sin \theta)^{3} \\
& =\left(\cos ^{3} \theta+3 \cos ^{2} \theta(i \sin \theta)+3 \cos \theta(i \sin \theta)^{2}+(i \sin \theta)^{3}\right) \\
& =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
\end{aligned}
$$

Therefore,

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta, \quad \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta
$$

Problem 6. (12 points) Decide if the matrix is diagonalizable or not. If possible, find an invertible S and a diagonal D such that $S^{-1} A S=D$, where A is the matrix in question.
(a) $\left[\begin{array}{rr}2 & 0 \\ -1 & 2\end{array}\right]$,
(b) $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Solution (a) [6] Not diagonalizable. Note that $\left[\begin{array}{rr}2 & 0 \\ -1 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(b) [6] Diagonalizable. $S=\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Note that the eigenvalues are obtained as 2,1 , and $E_{2}=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right), E_{1}=\operatorname{span}\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]\right)$.

Alternative solution

Note that there are other correct solutions. For example, $S=\left[\begin{array}{rrr}0 & \frac{1}{\sqrt{2}} & 1 \\ 1 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{2}} & 0\end{array}\right]$ and $D=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
(continued)

Problem 7. (20 points) Consider the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{rr}
5 \sqrt{3} & 0 \\
0 & 1 \\
-5 & 0
\end{array}\right], \quad \vec{b}=\left[\begin{array}{r}
\sqrt{3} \\
1 \\
-1
\end{array}\right] .
$$

(a) Find the least-squares solution \vec{x}^{*}.
(b) Find the singular values of A.
(c) Find the regularized solution $\vec{x}_{\text {reg }}^{*}$ by taking only the largest singular value into account.

Solution (a) [4]

$$
\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}=\left[\begin{array}{rrr}
\frac{\sqrt{3}}{20} & 0 & -\frac{1}{20} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{r}
\sqrt{3} \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5} \\
1
\end{array}\right] .
$$

(b) [4] By solving

$$
\operatorname{det}\left(A^{T} A-\lambda I_{2}\right)=\left|\begin{array}{rr}
100-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right|=(\lambda-100)(\lambda-1)=0,
$$

We obtain $\lambda=100,1$. Therefore singular values σ_{1} and σ_{2} are obtained as

$$
\sigma_{1}=10, \quad \sigma_{2}=1
$$

(c) [12] All singular values contribute in the Tikhonov regularization. So, we use the truncated SVD. Note that $\left(A^{T} A\right) \vec{v}_{1}=\sigma_{1}^{2} \vec{v}_{1}$ and $\left(A^{T} A\right) \vec{v}_{2}=\sigma_{2}^{2} \vec{v}_{2}$, where $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, respectively.
Then, $\vec{u}_{1}=\left(1 / \sigma_{1}\right) A \vec{v}_{1}=\left[\begin{array}{r}\sqrt{3} / 2 \\ 0 \\ -1 / 2\end{array}\right]$. We obtain

$$
\vec{x}_{\mathrm{reg}}^{*}=\frac{1}{\sigma_{1}} \vec{v}_{1}\left(\vec{u}_{1} \cdot \vec{b}\right)=\left[\begin{array}{r}
1 / 5 \\
0
\end{array}\right] .
$$

Alternative solution

By the singular value decomposition, A is written as

$$
A=U \Sigma V^{T}=\left[\begin{array}{rrr}
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{rr}
10 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{T} .
$$

Note that $\left(A^{T} A\right)^{-1} A^{T}=V\left(\Sigma^{T} \Sigma\right)^{-1} \Sigma^{T} U^{T}$ and $\left(\Sigma^{T} \Sigma\right)^{-1}=\left[\begin{array}{rr}\frac{1}{100} & 0 \\ 0 & 1\end{array}\right]$. We obtain

$$
\vec{x}_{\mathrm{reg}}^{*}=V\left[\begin{array}{rr}
\frac{1}{100} & 0 \\
0 & 0
\end{array}\right] \Sigma^{T} U^{T} \vec{b}=\left[\begin{array}{rrr}
\frac{\sqrt{3}}{20} & 0 & -\frac{1}{20} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{r}
\sqrt{3} \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5} \\
0
\end{array}\right] .
$$

(continued)

Theorem 1. If $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, then the linear system $A \vec{x}=\vec{b}$ has the unique least-squares solution $\vec{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}$.

Theorem 2. The determinant of an (upper or lower) triangular matrix is the product of the diagonal entries of the matrix.

Theorem 3. Elementary row operations for determinants: (i) If B is obtained from A by dividing a row of A by a scalar k, then $\operatorname{det} B=(1 / k) \operatorname{det} A$. (ii) If B is obtained from A by a row swap, then $\operatorname{det} B=-\operatorname{det} A$. (iii) If B is obtained from A by adding a multiple of a row of A to another row, then $\operatorname{det} B=\operatorname{det} A$.

Theorem 4. Let $\operatorname{det} A_{i j}$ be minors of an $n \times n$ matrix A whose entries are $a_{i j}$. Then the Laplace expansion down the j th column is $\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)$, and the Laplace expansion along the i th row is $\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(A_{i j}\right)$.

Theorem 5. Consider $A \vec{x}=\vec{b}$, where A is an invertible $n \times n$ matrix. The components x_{i} of \vec{x} are $x_{i}=\operatorname{det}\left(A_{\vec{b}, i}\right) / \operatorname{det} A$, where $A_{\vec{b}, i}$ is the matrix obtained by replacing the i th column of A by \vec{b}.

Theorem 6. Every $n \times n$ matrix A satisfies its own characteristic equation: $f_{A}(A)=0$.

Theorem 7. (i) Matrix A is diagonalizable if and only if there exists an eigenbasis for A. (ii) If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Theorem 8. $(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)$. Euler's formula: $e^{i \theta}=\cos \theta+i \sin \theta$.

Theorem 9. A matrix A is orthogonally diagonalizable if and only if A is symmetric. A complex matrix A is diagonalizable with a unitary matrix U if and only if A is selfadjoint.

Theorem 10. A symmetric matrix A is positive definite (positive semidefinite) if and only if all of its eigenvalues are positive (nonnegative).

Theorem 11. Any $n \times m$ matrix A can be written as $A=U \Sigma V^{T}$, where U is an orthogonal $n \times n$ matrix, V is an orthogonal $m \times m$ matrix, and Σ is an $n \times m$ matrix whose first r diagonal entries are the nonzero singular values $\sigma_{1}, \ldots, \sigma_{r}$ of A, and all other entries are zero $(r=\operatorname{rank}(A))$. The matrix A can also be written as $A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{T}+\cdots+\sigma_{r} \vec{u}_{r} \vec{v}_{r}^{T}$, where \vec{u}_{i} and \vec{v}_{i} are the columns of U and V.

Theorem 12. Consider the linear system $A \vec{x}=\vec{b}$, where $n \times m(n>m)$ matrix A is written as $A=U \Sigma V^{T}$. Here, $U=\left[\vec{u}_{1} \cdots \vec{u}_{n}\right], V=\left[\vec{v}_{1} \cdots \vec{v}_{m}\right]$, and the diagonal entries of Σ are $\sigma_{1}, \ldots, \sigma_{m}$. In the Tikhonov regularization with the Tikhonov regularization parameter $\alpha>0$, the regularized solution is obtained as $\vec{x}_{\text {reg }}^{*}=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\alpha^{2}} \frac{1}{\sigma_{1}} \vec{v}_{1}\left(\vec{u}_{1} \cdot \vec{b}\right)+\cdots+\frac{\sigma_{m}^{2}}{\sigma_{m}^{2}+\alpha^{2}} \frac{1}{\sigma_{m}} \vec{v}_{m}\left(\vec{u}_{m} \cdot \vec{b}\right)$. The vector $\vec{x}_{\text {reg }}^{*}$ minimizes $\varepsilon(\vec{x})=\|A \vec{x}-\vec{b}\|^{2}+\|\alpha \vec{x}\|^{2}$. In the truncated SVD with the regularization parameter $\alpha>0$, the regularized solution is obtained as $\vec{x}_{\text {reg }}^{*}=\theta\left(\sigma_{1}-\alpha\right) \frac{1}{\sigma_{1}} \vec{v}_{1}\left(\vec{u}_{1} \cdot \vec{b}\right)+\cdots+\theta\left(\sigma_{m}-\alpha\right) \frac{1}{\sigma_{m}} \vec{v}_{m}\left(\vec{u}_{m} \cdot \vec{b}\right)$, where $\theta(\cdot)$ is the step function $(\theta(x)=1$ for $x>0$ and $\theta(x)=0$ for $x \leq 0)$.

