Homework 11

Math 419, Winter 2013

1. Does there exist a 4×4 matrix without real eigenvalues? Give en example or prove it does not exist.
2. Let A be a 2×2 matrix with $\operatorname{tr}(A)=7$ and $\operatorname{det}(A)=12$.
(a) Determine the eigenvalues of A.
(b) Is matrix A with these properties unique? Either prove it is unique or give an example of two different matrices as above.
3. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 3
\end{array}\right]
$$

For what values of a, b, c does there exists a basis of eigenvectors of A ?
4. Suppose that there is a basis of eigenvectors of an $n \times n$ matrix A. What is the relationship between geometric and algebraic multiplicities of A ?
5. Diagonalize the following matrices. If the matrix is diagonalizable, compute the diagonal matrix D and the matrix S^{-1} (or S, whichever you like) such that $A=S^{-1} D S$. If the matrix is not diagonalizable, explain why.
(a) $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 4\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$
6. Determine whether the following statement is true or false. Justify. If an invertible matrix A can be diagonalized, then A^{-1} can be diagonalized, too.

