Homework 12

Math 419, Winter 2013

1. Let

$$
A=\left[\begin{array}{cc}
7 & 2 \\
-4 & 1
\end{array}\right] .
$$

Diagonalize A and use this to compute

$$
A^{3}-4 A^{2}+2 A-9 I
$$

Show all steps.
2. Find the eigenvalues and eigenvectors of the following matrices. Diagonalize these matrices. Show all steps.
(a) $\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right]$
(b) $\left[\begin{array}{cc}5 & 1 \\ -8 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}7 & -5 \\ 1 & 3\end{array}\right]$
3. Consider vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ such that $\|\vec{u}+\vec{v}\|=3$ and $\|\vec{u}-\vec{v}\|=1$. Determine $\vec{u} \cdot \vec{v}$.

Hint: simplify the expression $\|\vec{u}+\vec{v}\|^{2}-\|\vec{u}-\vec{v}\|^{2}$.
4. Compute the spectral decomposition for the following matrices:
(a) $\left[\begin{array}{ll}7 & 2 \\ 2 & 4\end{array}\right]$
(b) $\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$

To save you time, the eigenvalues are $7,7,-2$.
(c) $\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right] \quad$ To save you time, the eigenvalues are $5,2,2$.
5. Mark each statement True or False. Justify.
(a) For a nonzero vector $\vec{v} \in \mathbb{R}^{n}$, the matrix $\vec{v} \vec{v}^{\top}$ has rank $=1$.
(b) For a nonzero vector $\vec{v} \in \mathbb{R}^{n}$, the matrix $\vec{v} \vec{v}^{\top}$ is the matrix of an orthogonal projection onto $\operatorname{span}(\vec{v})$.
(c) If a real matrix A can be orthogonally diagonaled (i.e. if $A=S^{-1} D S$ for some orthogonal matrix S and a diagonal matrix D), then A is symmetric.
(e) Similar matrices have the same rank.
(f) Two matrices with the same trace and same determinant must be similar.
(g) All invertible matrices can be diagonalized (over \mathbb{C}).

