Homework 13

Math 419, Winter 2013

1. Diagonalize the following quadratic forms. That is, find a change of variable $\vec{y}=$ $U \vec{x}$ so that the quadratic form becomes canonical (without cross-product terms). Determine whether each quadratic form is positive definite, positive semidefinite, or neither.
(a) $5 x_{1}^{2}-4 x_{1} x_{2}+5 x_{2}^{2}$
(b) $8 x_{1}^{2}+6 x_{1} x_{2}$
2. For each matrix, find singular values and singular vectors (right and left). Find a singular value decomposition. Show all steps.
(a) $\left[\begin{array}{cc}-3 & 0 \\ 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$
3. Let A be a square matrix, Show that $|\operatorname{det} A|$ is the product of the singular values of A.
4. Let A be the rotation in the plane by angle $\pi / 4$ counter-clockwise. Find the singular values and singular vectors (left and right) of A.
5. Mark each statement True or False. Justify.
(a) Any matrix of rank r can be expressed as a sum of r matrices of rank 1 .
(b) If all singular values of A equal 1 then A is orthogonal.
(c) If A is orthogonal then all singular values of A equal 1 .
(d) The ranks of $A^{\top} A$ and $A A^{\top}$ are equal.
(e) The eigenvalues of a symmetric matrix A are the same as singular values of A.
