Homework 13

Math 419, Winter 2013

1. Diagonalize the following quadratic forms. That is, find a change of variable \(\vec{y} = U \vec{x} \) so that the quadratic form becomes canonical (without cross-product terms). Determine whether each quadratic form is positive definite, positive semidefinite, or neither.
 (a) \(5x_1^2 - 4x_1x_2 + 5x_2^2 \)
 (b) \(8x_1^2 + 6x_1x_2 \)

2. For each matrix, find singular values and singular vectors (right and left). Find a singular value decomposition. Show all steps.
 (a) \[
 \begin{pmatrix}
 -3 & 0 \\
 0 & 0
 \end{pmatrix}
 \]
 (b) \[
 \begin{pmatrix}
 -2 & 0 \\
 0 & -1
 \end{pmatrix}
 \]
 (c) \[
 \begin{pmatrix}
 2 & 3 \\
 0 & 2
 \end{pmatrix}
 \]
 (b) \[
 \begin{pmatrix}
 1 & -1 \\
 -2 & 2 \\
 2 & -2
 \end{pmatrix}
 \]

3. Let \(A \) be a square matrix. Show that \(|\det A| \) is the product of the singular values of \(A \).

4. Let \(A \) be the rotation in the plane by angle \(\pi/4 \) counter-clockwise. Find the singular values and singular vectors (left and right) of \(A \).

5. Mark each statement True or False. Justify.
 (a) Any matrix of rank \(r \) can be expressed as a sum of \(r \) matrices of rank 1.
 (b) If all singular values of \(A \) equal 1 then \(A \) is orthogonal.
 (c) If \(A \) is orthogonal then all singular values of \(A \) equal 1.
 (d) The ranks of \(A^\top A \) and \(AA^\top \) are equal.
 (e) The eigenvalues of a symmetric matrix \(A \) are the same as singular values of \(A \).