Homework 2

Math 419, Winter 2013

1. In each part below, find the matrix of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that:
(a) First reflects points about the x-axis and then rotates by $\pi / 4$ radians counterclockwise;
(b) First projects points onto the line $y=2 x$ and then rotates by $\pi / 4$ radians counterclockwise;
(c) First reflects points about the line $y=3 x$ and then dilates in the horizontal direction by the factor 2
2. Let $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 9 \\ -3 & k\end{array}\right]$. What value(s) of k, if any, will make $A B=B A$?
3. (a) Let $A=\left[\begin{array}{cc}3 & -6 \\ -2 & 4\end{array}\right]$. Construct a non-zero 2×2 matrix B such that $A B=0$ (the matrix whose all entries are zero).
(b) Find an example of a non-zero matrix A for which $A^{2}=0$. (Here $A^{2}=A A$.)
4. Consider a transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as

$$
T(x, y)=(x+1,2 y)
$$

Prove that T is not a linear transformation.
5. Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]
$$

Compute $A D$ and $D A$. Describe in words the effect of multiplication by a diagonal matrix D on the right and on the left.
6. Find the (matrix of the) linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that transforms vector $(1,1)$ into vector $(3,-1)$ and vector $(1,-1)$ into vector $(-1,-3)$.

