Homework 3

Math 419, Winter 2013

1. For each matrix below, compute its inverse or explain why it is not invertible. Show all steps.

(a	.)	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	2 7		(b)	$\begin{bmatrix} 1\\ 1\\ 5 \end{bmatrix}$	$2 \\ -2 \\ -2$	1	3 - 3
(c)	1 0 0 0	1 1 0 0	1 1 1 0	1 1 1 1	(d)		$1 \\ 2 \\ -1$	$\begin{array}{c} 6 \\ 4 \\ 2 \end{array}$	

2. Suppose AB = AC where A is an $n \times n$ matrix, B and C are $n \times m$ matrices. Show that B = C. Is this true, in general, when A is not invertible? (Prove this or give an example where it fails).

3. Consider the $n \times n$ matrix of the form

$$A = \begin{bmatrix} I_{n-1} & \vec{v} \\ \vec{u} & 1 \end{bmatrix}.$$

(The upper-left $(n-1) \times (n-1)$ block of A is the identity matrix; the lower-right entry is 1; $\vec{u} \in \mathbb{R}^{n-1}$ is a row-vector and $\vec{v} \in \mathbb{R}^{n-1}$ is a column vector. I suggest to write this matrix for n = 4 to see more clearly what is going on.)

Describe when A is invertible, in terms of \vec{u} and \vec{v} .

4. For each matrix below, compute its image and kernel.

(a)	$\begin{bmatrix} 3\\ -9 \end{bmatrix}$	$\begin{bmatrix} -4\\12 \end{bmatrix}$	(b)	$\begin{bmatrix} -2\\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
(c) $\begin{bmatrix} 3\\1\\1 \end{bmatrix}$	8 1 1 . 1	$\begin{bmatrix} 0\\2\\1 \end{bmatrix}$	(b)	$\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}$	$ \begin{bmatrix} -3 \\ 3 \\ 6 \end{bmatrix} $

5. Find an example of a 2×2 matrix such that im(A) = ker(A).