Homework 3

Math 419, Winter 2013

1. For each matrix below, compute its inverse or explain why it is not invertible. Show all steps.
(a) $\left[\begin{array}{ll}1 & 2 \\ 3 & 7\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 2 & -3 \\ 1 & -2 & 1 \\ 5 & -2 & -3\end{array}\right]$
(c) $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5\end{array}\right]$
2. Suppose $A B=A C$ where A is an $n \times n$ matrix, B and C are $n \times m$ matrices. Show that $B=C$. Is this true, in general, when A is not invertible? (Prove this or give an example where it fails).
3. Consider the $n \times n$ matrix of the form

$$
A=\left[\begin{array}{cc}
I_{n-1} & \vec{v} \\
\vec{u} & 1
\end{array}\right]
$$

(The upper-left $(n-1) \times(n-1)$ block of A is the identity matrix; the lower-right entry is $1 ; \vec{u} \in \mathbb{R}^{n-1}$ is a row-vector and $\vec{v} \in \mathbb{R}^{n-1}$ is a column vector. I suggest to write this matrix for $n=4$ to see more clearly what is going on.)

Describe when A is invertible, in terms of \vec{u} and \vec{v}.
4. For each matrix below, compute its image and kernel.
(a) $\left[\begin{array}{cc}3 & -4 \\ -9 & 12\end{array}\right]$
(b) $\left[\begin{array}{cc}-2 & 1 \\ 3 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}3 & 1 & 0 \\ 1 & -1 & 2 \\ 1 & 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & -3 \\ -1 & 3 \\ 2 & 6\end{array}\right]$
5. Find an example of a 2×2 matrix such that $\operatorname{im}(A)=\operatorname{ker}(A)$.

