Homework 4

Math 419, Winter 2013

1. (a) Find a 3×3 matrix A whose image is the line that passes through points (0,0,0) and (1,-1,1).

(b) Find a 3×3 matrix A whose kernel is the xy-plane and whose image is the z-axis.

(c) Find a 2×2 matrix A whose image is the line y = x and whose kernel is the x-axis.

2. Let A be a $p \times m$ matrix and B be an $n \times p$ matrix. In each part, determine if there is any relationship between the two given sets. Are they necessarily equal? Is one of them always contained in the other? Explain.

- (a) $\ker(BA)$ and $\ker(A)$.
- (b) im(BA) and im(A).

3. For each set of vectors, determine whether it is linearly independent, whether it spans \mathbb{R}^3 , and whether it forms a basis of \mathbb{R}^3 .

(a)
$$\vec{v}_1 = (3, 0, 6), \ \vec{v}_2 = (-4, 1, 7), \ \vec{v}_3 = (-2, 1, 5).$$

- (b) $\vec{v}_1 = (1, 1, 1), \ \vec{v}_2 = (1, 1, 0), \ \vec{v}_3 = (0, 0, 1).$
- (c) $\vec{v}_1 = (1, 1, 1), \ \vec{v}_2 = (0, 0, 0), \ \vec{v}_3 = (0, 1, 1).$
- (d) $\vec{v}_1 = (1, 0, -3), \ \vec{v}_2 = (3, 1, -4), \ \vec{v}_3 = (-2, -1, 1).$
- (d) $\vec{v}_1 = (1, 2, -4), \ \vec{v}_2 = (-4, 3, 6).$

(a) $\vec{v}_1 = (3, 0, 6), \ \vec{v}_2 = (-4, 1, 7), \ \vec{v}_3 = (-2, 1, 5), \ \vec{v}_4 = (3, 1, 2).$ (Note that the first three vectors are as in (a).)

4. (a) Find a basis of the plane x - 3y + 2z = 0 in \mathbb{R}^3 .

(b) Find the representation of the vector (6, 2, 0) as a linear combination of the basis vectors from (a).

5. Are the following sets linear subspaces? Explain.

(a) $W \subset \mathbb{R}^3$ consisting of all vectors of the form (a,b,1) where a and b are real numbers.

(b) $W \subset \mathbb{R}^4$ consisting of all vectors of the form (a, b, a - b, a + 2b) where a and b are real numbers.

(b) $W \subset \mathbb{R}^3$ consisting of all vectors of the form (a,b,ab) where a and b are real numbers.