Homework 5

Math 419, Winter 2013

1. In each part, find examples of matrices as stated, or explain why no such examples exist:
(a) 3×7 matrix with $\operatorname{dim}(\operatorname{ker}(A))=4$.
(b) 8×3 matrix with $\operatorname{dim}(\operatorname{ker}(A))=4$.
(c) 4×6 matrix with $\operatorname{dim}(\operatorname{ker}(A))=4$ and $\operatorname{rank}(A)=3$
(d) 4×6 matrix with $\operatorname{dim}(\operatorname{ker}(A))=5$ and $\operatorname{rank}(A)=1$.
(e) An invertible 3×3 matrix C which can be expressed as $C=B A$ for some 5×3 matrix A and 3×5 matrix B.
2. Which of the following sets are linear spaces? If you believe that it is a linear space, do not check all the axioms - just check that the set is closed under addition and multiplication by scalars. If you believe that the set is not a linear space, explain why (find an example that violates one of the requirements).
(a) The set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)=1$
(b) The set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0)=0$
(c) The set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1} f(x) d x=0$
(d) The set of all invertible 2×2 matrices
3. In each part, construct a basis for the linear space V, and compute the dimension of V.
(a) V is the set of all 2×2 matrices A satisfying $B A=0$, where $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
(b) V is the set of quadratic polynomials f such that $f(0)=0$.
(c) V is the set of even quadratic polynomials f, i.e. such that $f(x)=f(-x)$ for all x.
4. Find the image, kernel and rank of the following linear transformations:
(a) $T(f)=\int_{1}^{4} f(x) d x$ from $P_{2}[x]$ to \mathbb{R}.
(b) $T(f)=f(8)$ from $P_{2}[x]$ to \mathbb{R}.
(c) $T(f)=x f^{\prime}(x)$ from $P_{2}[x]$ to $P_{2}[x]$. (For example, if $f(x)=x-x^{2}$ then $(T(f))(x)=x(1-2 x)=x-2 x^{2}$.)
5. One basis for the linear space $P_{2}[x]$ is formed by the monomials $1, x, x^{2}$. Construct a different basis for $P_{2}[x]$ whose elements are all quadratic functions (i.e. they are all of the form $a+b x+c x^{2}$ with $c \neq 0$.) Explain why your set is a basis.
