1. In each part, determine if the given linear transformation is an isomorphism. Explain your reasoning.

(a) \(T(f) = f - 2f' \) from \(P_3[x] \) to \(P_3[x] \)

(b) An orthogonal projection in \(\mathbb{R}^3 \) onto the plane \(x + y + z = 0 \).

(c) \(T(a, b, c) = (a - b, b - c, a - c) \) from \(\mathbb{R}^3 \) to \(\mathbb{R}^3 \)

(d) \(T(f) = f(t+1) \) from \(C[1, 2] \) to \(C[0, 1] \) (these are spaces of continuous functions).

2. In each part, determine if the given linear spaces \(V \) and \(W \) are isomorphic. If they are isomorphic, give an example of isomorphism \(T: V \to W \). If they are not isomorphic, explain why.

(a) The plane \(V \) defined by the equation \(x + y + z = 0 \) and the plane \(W \) defined by the equation \(x - 2y = 0 \), both as subspaces of \(\mathbb{R}^3 \).

(b) The space \(V \) of quadratic polynomials of the form \(a + cx^2 \) and \(W = \mathbb{R}^2 \).

(c) The image \(V \) and kernel \(W \) of any given \(3 \times 3 \) matrix.

(d) Spaces of continuous functions \(V = C[0, 1] \) and \(V = C[0, 2] \).

3. (a) Find the change of basis matrix from the standard basis of \(\mathbb{R}^2 \) to the basis \(B \) consisting of the vectors \((-1, 2)\) and \((-3, 5)\).

(b) Compute the coordinates of the vector \((2, -5)\) in the basis \(B \), i.e. compute \([\vec{x}]_B\) for that vector.

4. In each part, find the matrices of the given linear transformation \(T: \mathbb{R}^2 \to \mathbb{R}^2 \), first with respect to the standard basis of \(\mathbb{R}^2 \), and then with respect of the basis consisting of the vectors \((1, 3)\) and \((2, 5)\):

(a) \(T(x, y) = (2y, 3x - y) \);

(b) \(T(x, y) = (3x - 4y, x + 5y) \).

5. Compute the orthogonal projection in \(\mathbb{R}^3 \) of the vector \((-1, 1, 3)\) onto the plane spanned by the vectors \((2, 5, 2)\) and \((3, -2, 2)\). [Hint: are these two vectors orthogonal, orthonormal or neither?]

6. Among all unit vectors \((x, y, z)\) in \(\mathbb{R}^3 \), find the one for which the sum \(x - 2y + 4z \) is maximal. [Hint: think about Cauchy-Schwarz inequality.]