Homework 6

Math 419, Winter 2013

1. In each part, determine if the given linear transformation is an isomorphism. Explain your reasoning.

(a) T(f) = f - 2f' from $P_3[x]$ to $P_3[x]$

(b) An orthogonal projection in \mathbb{R}^3 onto the plane x + y + z = 0.

(c) T(a, b, c) = (a - b, b - c, a - c) from \mathbb{R}^3 to \mathbb{R}^3

(d) T(f) = f(t+1) from C[1, 2] to C[0, 1] (these are spaces of continuous functions).

2. In each part, determine if the given linear spaces V and W are isomorphic. If they are isomorphic, give an example of isomorphism $T: V \to W$. If they are not isomorphic, explain why.

(a) The plane V defined by the equation x + y + z = 0 and the plane W defined by the equation x - 2y = 0, both as subspaces of \mathbb{R}^3 .

(b) The space V of quadratic polynomials of the form $a + cx^2$ and $W = \mathbb{R}^2$.

(c) The image V and kernel W of any given 3×3 matrix.

(d) Spaces of continuous functions V = C[0, 1] and V = C[0, 2].

3. (a) Find the change of basis matrix from the standard basis of \mathbb{R}^2 to the basis \mathcal{B} consisting of the vectors (-1, 2) and (-3, 5).

(b) Compute the coordinates of the vector (2, -5) in the basis \mathcal{B} , i.e. compute $[\vec{x}]_{\mathcal{B}}$ for that vector.

4. In each part, find the matrices of the given linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, first with respect to the standard basis of \mathbb{R}^2 , and then with respect of the basis consisting of the vectors (1,3) and (2,5):

- (a) T(x, y) = (2y, 3x y);
- (b) T(x,y) = (3x 4y, x + 5y).

5. Compute the orthogonal projection in \mathbb{R}^3 of the vector (-1, 1, 3) onto the plane spanned by the vectors (2, 5, 2) and (3, -2, 2). [Hint: are these two vectors orthogonal, orthonormal or neither?]

6. Among all unit vectors (x, y, z) in \mathbb{R}^3 , find the one for which the sum x - 2y + 4z is maximal. [Hint: think about Cauchy-Schwarz inequality.]