Homework 6

Math 419, Winter 2013

1. In each part, determine if the given linear transformation is an isomorphism. Explain your reasoning.
(a) $T(f)=f-2 f^{\prime}$ from $P_{3}[x]$ to $P_{3}[x]$
(b) An orthogonal projection in \mathbb{R}^{3} onto the plane $x+y+z=0$.
(c) $T(a, b, c)=(a-b, b-c, a-c)$ from \mathbb{R}^{3} to \mathbb{R}^{3}
(d) $T(f)=f(t+1)$ from $C[1,2]$ to $C[0,1]$ (these are spaces of continuous functions).
2. In each part, determine if the given linear spaces V and W are isomorphic. If they are isomorphic, give an example of isomorphism $T: V \rightarrow W$. If they are not isomorphic, explain why.
(a) The plane V defined by the equation $x+y+z=0$ and the plane W defined by the equation $x-2 y=0$, both as subspaces of \mathbb{R}^{3}.
(b) The space V of quadratic polynomials of the form $a+c x^{2}$ and $W=\mathbb{R}^{2}$.
(c) The image V and kernel W of any given 3×3 matrix.
(d) Spaces of continuous functions $V=C[0,1]$ and $V=C[0,2]$.
3. (a) Find the change of basis matrix from the standard basis of \mathbb{R}^{2} to the basis \mathcal{B} consisting of the vectors $(-1,2)$ and $(-3,5)$.
(b) Compute the coordinates of the vector $(2,-5)$ in the basis \mathcal{B}, i.e. compute $[\vec{x}]_{\mathcal{B}}$ for that vector.
4. In each part, find the matrices of the given linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, first with respect to the standard basis of \mathbb{R}^{2}, and then with respect of the basis consisting of the vectors $(1,3)$ and $(2,5)$:
(a) $T(x, y)=(2 y, 3 x-y)$;
(b) $T(x, y)=(3 x-4 y, x+5 y)$.
5. Compute the orthogonal projection in \mathbb{R}^{3} of the vector $(-1,1,3)$ onto the plane spanned by the vectors $(2,5,2)$ and $(3,-2,2)$. [Hint: are these two vectors orthogonal, orthonormal or neither?]
6. Among all unit vectors (x, y, z) in R^{3}, find the one for which the sum $x-2 y+4 z$ is maximal. [Hint: think about Cauchy-Schwarz inequality.]
