Homework 7

Math 419, Winter 2013

1. Find the matrix of the given linear transformation T in the given basis. Determine if T is an isomorphism.
(a) $T: P_{2}[x] \rightarrow P_{2}[x]$ is defined as $T(f)=f^{\prime \prime}+4 f^{\prime}$. The basis is $\left\{1, x, x^{2}\right\}$.
(b) $T: V \rightarrow V$, where $V=\operatorname{span}\{\cos x, \sin x, 1\}$, is defined as $T(f)=f-2 f^{\prime}+3 f^{\prime \prime}$. The basis is $\{\cos x, \sin x, 1\}$.
2. Consider the following vectors in \mathbb{R}^{4} :
$\vec{v}_{1}=(1 / 2,1 / 2,1 / 2,1 / 2), \vec{v}_{2}=(1 / 2,1 / 2,-1 / 2,-1 / 2), \vec{v}_{3}=(1 / 2,-1 / 2,1 / 2,-1 / 2)$.
Can you find a vector \vec{v}_{4} in \mathbb{R}^{4} so that the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are orthonormal? If so, how many such vectors are there?
3. Two subspaces V and W of \mathbb{R}^{n} are called orthogonal subspaces if $\vec{v} \cdot \vec{w}=0$ for all $\vec{v} \in V, \vec{w} \in W$. Answer True or False for each part. Explain why if you choose True, and give a counter-example if you choose False.
(a) $\operatorname{ker}(A)$ and $\operatorname{im}(A)$ are orthogonal for every $n \times n$ matrix A.
(b) There are infinitely many pairs of two planes in \mathbb{R}^{2} which are orthogonal.
(c) Subspaces V and W are orthogonal if and only if $W=V^{\perp}$.
(e) If V and W are orthogonal, then V^{\perp} and W^{\perp} are orthogonal.
4. Find a basis for V^{\perp} where V is the subspace of \mathbb{R}^{4} spanned by the vectors $\vec{v}_{1}=(1,2,3,4)$ and $\vec{v}_{2}=(5,6,7,8)$.
5. Suppose vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}$ form an orthonormal basis of \mathbb{R}^{5}. Compute the length of the vector

$$
\vec{v}=3 \vec{v}_{1}-2 \vec{v}_{2}+7 \vec{v}_{3}-\vec{v}_{4}+\vec{v}_{5}
$$

