Homework 8

Math 419, Winter 2013

1. Let W be the subspace spanned by the vectors \vec{u}_{1}, \vec{u}_{2} given below. Write vector \vec{x} as the sum of a vector in W and a vector orthogonal to W.

$$
\vec{x}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right], \quad \vec{u}_{1}=\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right], \quad \vec{u}_{3}=\left[\begin{array}{l}
5 \\
1 \\
4
\end{array}\right]
$$

2. Find an orthonormal basis of the plane $x+y+z=0$ (as a subspace of \mathbb{R}^{3}).
3. In each part, the given set is a basis for a subspace W. Use the Gram-Schmidt process to produce an orthonormal basis of W.
(a) $\left[\begin{array}{c}2 \\ -5 \\ 1\end{array}\right],\left[\begin{array}{c}4 \\ -1 \\ 2\end{array}\right]$.
(b) $\left[\begin{array}{c}3 \\ -4 \\ 5\end{array}\right],\left[\begin{array}{c}-3 \\ 14 \\ -7\end{array}\right]$.
4. Mark each statement True or False, Justify each answer.
(a) If \vec{z} is orthogonal to \vec{u}_{1} and \vec{u}_{2} and if $W=\operatorname{span}\left(\vec{u}_{1}, \vec{u}_{2}\right)$ then \vec{z} must be in W^{\perp}.
(b) The orthogonal projection $\operatorname{proj}_{V}(\vec{x})$ of a vector \vec{x} onto a subspace V can sometimes depend on the orthogonal basis for V used to compute $\operatorname{proj}_{V}(\vec{x})$.
(c) If \vec{x} is in a subspace V, then the orthogonal projection of \vec{x} onto V is \vec{x} itself.
