Homework 9

Math 419, Winter 2013

1. Mark each statement True or False. Justify each answer.
(a) If U and V are orthogonal matrices then $U V$ is an orthogonal matrix.
(b) The set of all orthogonal 3×3 matrices forms a linear space.
(c) The determinant of all orthogonal 2×2 matrices is 1 .
(d) All entries of an orthogonal matrix are less than or equal to 1 .
(e) If A is an orthogonal matrix then A^{\top} is orthogonal.
2. Find an orthogonal matrix A such that

$$
A\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

3. In each part, find the vector \vec{x} which minimizes $\|A \vec{x}-\vec{b}\|$.
(a) $A=\left[\begin{array}{cc}1 & 3 \\ 1 & -1 \\ 1 & 1\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}5 \\ 1 \\ 0\end{array}\right]$.
(b) $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -3 \\ -1 & 3\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$.
4. Compute the determinants of the following matrices. Indicate what method you use. Show all steps.
(a) $A=\left[\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{cccc}6 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 2 & 0 & 0 & 0 \\ 8 & 3 & 1 & 8\end{array}\right]$
(c) $A=\left[\begin{array}{ccccc}3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0\end{array}\right]$.
