
Fall 2012 Math 419

Review Sheet for Midterm Exam

Terminology

Can you explain these words?

1. reduced row-echelon form

2. elementary row operations

3. consistent

4. rank

5. linear combination

6. linear transformation

7. orthogonal projection

8. image

9. span

10. kernel

11. linear space

12. subspace

13. redundant

14. linearly independent

15. basis

16. trivial relation

17. dimension

18. nullity
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19. coordinate vector

20. the matrix of a linear transformation

21. similar matrices

22. isomorophism and isomorphic

23. change of basis matrix

24. orthogonal

25. norm

26. orthonormal

27. Kronecker delta

28. orthogonal complement

29. Gram-Schmidt process

30. QR factorization

31. orthogonal transformation and orthogonal matrix

32. transpose

33. symmetric and skew-symmetric

34. least-squares solution

35. normal equation

36. Moore-Penrose pseudoinverse

37. inner product and inner product space

38. Fourier coefficients
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Reduced row-echelon form: If a row has nonzero entries, then the first
nonzero entry is 1 (the leading 1). If a column contains a leading 1, then
all the other entries in that column are 0. If a row contains a leading 1,
then each row above it contains a leading 1 further to the left. The reduced
row-echelon form of a matrix A is expressed as rref(A).

Elementary row operations: To divide a row by a nonzero scalar, to
subtract a multiple of a row from another row, and to swap two rows.

Consistent: a system of equations is said to be consistent if there is at
least one solution. A system is inconsistent if there is no solution.

Rank: The number of leading 1’s in the reduced row-echelon form.

Linear combination: A vector !b is a linear combination of !v1, . . . ,!vm if
!b is given by !b = x1!v1 + · · ·+ xm!vm with scalars x1, . . . , xm.

Linear transformation: A transformation T is a linear transformation if
T (α!v + β !w) = αT (!v) + βT (!w) is satisfied for scalars α, β and vectors !v, !w.
Then, there exists a matrix A such that T (!x) = A!x.

Orthogonal projection: For given vector !x and subspace V , we uniquely
have !x = !x‖ + !x⊥, where !x‖ ∈ V . We call !x‖ denoted by projV (!x) the
orthogonal projection of !x onto V .

Image: For an n ×m matrix A, imaga(A) = {!y ∈ Rn : !y = A!x for ∀!x ∈
Rm}.

Span: For vectors !v1, . . . ,!vm ∈ Rn, span(!v1, . . . ,!vm) = {!w : c1!v1 + · · · +
cm!vm = !w with c1, . . . , cm ∈ R}.

Kernel: For an n×m matrix A, ker(A) = {!x ∈ Rm : A!x = !0}.

Linear space: A linear space (vector space) V is a set endowed with a rule
for addition and a rule for scalar multiplication such that these operations
satisfy the following eight rules (!x, !y, !z ∈ V and α, β ∈ R): (i) (!x+ !y)+!z =
!x+ (!y + !z). (ii) !x+ !y = !y + !x. (iii) There exists !0 such that !x+ !0 = !x for
∀!x ∈ V . (iv) For each !x ∈ V , there exists −!x such that !x + (−!x) = !0. (v)
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α(!x + !y) = α!x + β!y. (vi) (α + β)!x = α!x + β!x. (vii) α(β!x) = (αβ)!x. (viii)
1!x = !x.

Subspace: A subset W of V is called a subspace of V if (i) W contains
!0 ∈ V , (ii) W is closed under addition, and (iii) W is closed under scalar
multiplication.

Trivial relation: For vectors !v1, . . . ,!vm ∈ Rn, we call c1!v1+· · ·+cm!vm = !0
a (linear) relation. When we choose c1 = · · · = cm = 0, the relation is called
the trivial relation.

Dimension: The number of vectors in a basis of a subspace V of Rn is
called the dimension of V , denoted by dim(V ).

Nullity: The nullity of matrix A is the dimension of ker(A).

Coordinate vector: Consider a basis B = (!v1, . . . ,!vm) of a subspace V
of Rn. Any vector !x ∈ V can be written uniquely as !x = c1!v1 + · · ·+ cm!vm.
The scalars c1, . . . , cm are called the B-coordinates of !x, and the vector

[!x]B =







c1
...
cm







is called the B-coordinate vector of !x.

The matrix of a linear transformation: Consider a linear transforma-
tion T from Rn to Rn and a basis B of Rn. The n × n matrix B such that
[T (!x)]B = B [!x]B for ∀!x ∈ Rn is called the B-matrix of T .

Similar matrices: An n× n matrix A is similar to an n× n matrix B if
there exists an invertible matrix S such that AS = SB or B = S−1AS.

Isomorophism and isomorphic: An invertible linear transformation T
is called an isomorphism. We say the linear space V is isomorphic to the
linear space W if there exists an isomorphism T from V to W .

Change of basis matrix: For two bases A and B of an n-dimensional
linear space V , consider the linear transformation LA ◦L−1

B from Rn to Rn,
or SB→A!x = LA

(

L−1
B (!x)

)

for ∀!x ∈ Rn. This invertible matrix SB→A is
called the change of basis matrix from B to A.
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Orthogonal: !v · !w = 0 or more generally 〈f, g〉 = 0. If !v · !w = 0 for all
!v ∈ V and !w ∈ W for two subspaces V and W of the same linear space,
then V and W are said to be orthogonal.

Norm: ||!v|| =
√
!v · !v or more generally ||!v|| =

√

〈f, g〉.

Orthonormal: The vectors are called orthonormal if they are all unit
vectors and orthogonal to one another.

Kronecker delta: δij = 0 if i )= j and = 1 if i = j.

Orthogonal complement: The orthogonal complement V ⊥ of a sub-
space V of Rn is the set of those vectors !x ∈ Rn that are orthogonal to
all vectors in V :

V ⊥ = {!x ∈ R
n : !v · !x = 0 for ∀!v ∈ V } .

Note that V ⊥ is the kernel of the orthogonal projection onto V .

Gram-Schmidt process: The Gram-Schmidt process is a method of con-
structing orthonormal vectors from a set of linearly independent vectors (see
Theorem 5.2.1).

QR factorization: Suppose columns of an n ×m matrix M are linearly
independent. Then we can uniquely decompose M as M = QR, where the
columns of the n×m matrix Q are orthonormal and R is an m×m upper
triangular matrix with positive diagonal entries.

Orthogonal transformation and orthogonal matrix: A linear trans-
formation T from Rn to Rn is called orthogonal if it preserves the lengths
of vectors: ||T (!x)|| = ||!x|| for ∀!x ∈ Rn. If T (!x) = A!x is an orthogonal
transformation, the matrix A is called an orthogonal matrix.

Transpose: Consider an m × n matrix A. The transpose AT of A is the
n×m matrix whose ijth entry is the jith entry of A.

Symmetric and skew-symmetric: We say that a square matrix A is
symmetric if AT = A, and skew-symmetric if AT = −A.
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Least-squares solution: For a linear system A!x = !b with an n × m
matrix A, a vector !x∗ ∈ Rm is called a least-squares solution of this system if
||!b−A!x∗|| ≤ ||!b−A!x|| for ∀!x ∈ Rm. The least-squares solutions of the system
A!x = !b are the exact solutions of the (consistent) system ATA!x = AT!b.

Normal equation: For a system A!x = !b, the system ATA!x = AT!b is
called the normal equation of A!x = !b.

Moore-Penrose pseudoinverse: For any n × m matrix A, there ex-
ists a unique matrix A+ which satisfies the following Penrose equations (i)
AA+A = A, (ii) A+AA+ = A+, (iii) (AA+)T = AA+, (iv) (A+A)T = A+A.
The matrix A+ is called the Moore-Penrose pseudoinverse.

Inner product and inner product space: An inner product in a linear
space V is a rule that assigns a real scalar 〈f, g〉 to any pair f, g ∈ V such that
the following properties hold for ∀f, g, h ∈ V , and ∀c ∈ R: (i) 〈f, g〉 = 〈g, f〉.
(ii) 〈f + h, g〉 = 〈f, g〉 + 〈h, g〉. (iii) 〈cf, g〉 = c〈f, g〉. (iv) 〈f, f〉 > 0 for all
nonzero f ∈ V . A linear space endowed with an inner product is called an
inner product space.

Fourier coefficients: Let f(t) be a piecewise continuous function defined
on the interval [−π,π]. When f(t) is approximated as f(t) = projTn

(f(t)) =
a0

1√
2
+ b1 sin(t) + c1 cos(t) + · · ·+ bn sin(nt) + cn cos(nt), the coefficients bk,

ck, and a0 are called the Fourier coefficients of f(t).
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Several Theorems

Theorem 2.4.8

Let A and B be n× n matrices such that BA = In. Then (i) A and B are
invertible, (ii) A−1 = B and B−1 = A, and (iii) AB = In.

Theorem 2.4.9

If A =

[

a b
c d

]

is invertible, then A−1 = 1
ad−bc

[

d −b
−c a

]

.

Theorem 3.1.7

For an n×m matrix A, ker(A) = {!0} if and only if rank(A) = m.

Theorem 3.1.8, Theorem 3.3.10, and HW3 6)

For an n × n matrix A, the following statements are equivalent. (i) A is
invertible. (ii) A!x = !b has a unique solution !x for ∀!b ∈ Rn. (iii) rref(A) = In.
(iv) rank(A) = n. (v) image(A) = Rn. (vi) ker(A) = {!0}. (vii) The column
vectors of A form a basis of Rn. (viii) The column vectors of A span Rn.
(ix) The column vectors of A are linearly independent.

Theorem 3.2.9 and HW3 3)

Vectors !v1, . . . ,!vm ∈ Rn are said to be linearly independent if none of
!v1, . . . ,!vm is redundant. The following statements are equivalent. (i) None
of !vi (i = 1, . . . ,m) is a linear combination of other vectors. (ii) There is
only the trivial relation among !v1, . . . ,!vm. (iii) ker [!v1 . . .!vm] = {!0}. (iv)
rank [!v1 . . .!vm] = m.

Theorem 3.2.10 and HW3 4)

The vectors !v1, . . . ,!vm in a subspace V of Rn form a basis of V if and only
if every vector v ∈ V can be expressed uniquely as a linear combination
!v = c1!v1 + · · ·+ cm!vm.

Theorem 3.3.2

All bases of a subspace V of Rn consist of the same number of vectors.
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Theorem 3.3.5

If we pick up the column vectors of A that correspond to the columns of
rref(A) containing the leading 1’s, then they form a basis of the image of A.

Theorem 3.3.6

For any matrix A, dim(image(A)) = rank(A).

Theorem 3.3.7 (Rank-nullity theorem)

For any n×m matrix A, dim(ker(A)) + dim(image(A)) = m.

Theorem 4.2.3

Any n-dimensional linear space V is isomorphic to Rn.

Theorem 4.3.2

Let B be the matrix of a linear transformation T from an n-dimensional
linear space V to V with respect to a basis B = (!v1, . . . ,!vn) of V . Then,

B =
[

[T (!v1)]B . . . [T (!vn)]B
]

.

Theorem 4.3.4

Consider the change of basis matrix SB→A from a basis B = (b1, . . . , bm)
to another basis A = (a1, . . . , am) of a subspace V of Rn. The change

of basis matrix SB→A is given by SB→A =
[

[b1]A . . . [bn]A
]

and satisfies
[

!b1 . . .!bm
]

=
[

!a1 . . .!am
]

SB→A.

Theorem 4.3.5

Let A and B be bases of a linear space V . Let A and B be the A- and
B-matrix of a linear transformation T from V to V . Let SB→A be the
change of basis matrix. Then A is similar to B, and ASB→A = SB→AB or
A = SB→ABS−1

B→A or B = S−1
B→AASB→A.

Theorem 5.1.4

For a subspace V of Rn, any vector !x ∈ Rn can be uniquely written as
!x = !x‖ + !x⊥, where !x‖ is in V and !x⊥ is perpendicular to V .
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Theorem 5.1.5, Theorem 5.1.6

If V is a subspace of Rn with an orthonormal basis !u1, . . . , !um, then
projV (!x) = !x‖ = (!u1 · !x)!u1 + · · · + (!um · !x)!um for all !x ∈ Rn. In par-
ticular, any !x ∈ Rn is given by !x = (!u1 · !x)!u1 + · · · + (!un · !x)!un, where
!u1, . . . , !un ∈ Rn form an orthonormal basis.

Theorem 5.1.8

Consider a subspace V of Rn. (i) V ⊥ is a subspace of Rn. (ii) V ∩V ⊥ = {!0}.
(iii) dim(V ) + dim(V ⊥) = n. (iv) (V ⊥)⊥ = V .

Theorem 5.1.9 and HW4 7) (Ex. 5.1.12)

For !x, !y ∈ Rn, the equation ||!x + !y||2 = ||!x||2 + ||!y||2 holds if and only if !x
and !y are orthogonal (the Pythagorean theorem). For !x and !y, the triangle
inequality ||!x+ !y|| ≤ ||!x||+ ||!y|| always holds.

Theorem 5.1.10

Consider a subspace V of Rn and a vector !x ∈ Rn. Then, || projV (!x)|| ≤ ||!x||.

Theorem 5.1.11 and HW4 6) (Cauchy-Schwarz inequality)

If !x, !y ∈ Rn, then |!x · !y| ≤ ||!x|| ||!y||.

Theorem 5.2.1 (Gram-Schmidt process)

Consider a basis !v1, . . . ,!vm of a subspace V of Rn. For j = 2, . . . ,m, we
resolve the vector !vj into its components parallel and perpendicular to the

span of the preceding vectors !v1, . . . ,!vj−1: !vj = !v‖j + !v⊥j with respect to

span(!v1, . . . ,!vj−1). Then !u1 = !v1/||!v1||, !u2 = !v⊥2 /||!v⊥2 ||, . . . , !um = !v⊥m/||!v⊥m||
form an orthonormal basis of V . We have !v⊥j = !vj − !v‖j = !vj − (!u1 · !vj)!u1 −
· · ·− (!uj−1 · !vj)!uj−1.

Theorem 5.2.2 (QR factorization)

Consider an n×m matrix M with linearly independent columns !v1, . . . ,!vm.
Then there exists an n×mmatrix Q whose columns !u1, . . . , !um are orthonor-
mal and an upper triangular matrix R with positive diagonal entries such
that M = QR. This representation is unique. Furthermore, r11 = ||!v1||,
rjj = ||!v⊥j || (j = 2, . . . ,m), and rij = !ui · !vj (i < j).
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Theorem 5.3.3, Theorem 5.3.7, and Theorem 5.3.8

An n × n matrix A is an orthogonal matrix if ||A!x|| = ||!x|| for ∀!x ∈ Rn.
The following statements are equivalent: (i) The columns of A from an
orthonormal basis of Rn. (ii) ATA = In. (iii) A−1 = AT .

HW5 5) (Ex. 5.3.28)

An orthogonal transformation L from Rn to Rn preserves the dot product:
!v · !w = L(!v) · L(!w), for all !v and !w in Rn.

HW5 10) (Ex. 5.4.16)

rank(A) = rank(AT ).

Theorem 5.4.1

For any matrix A, we have [image(A)]⊥ = ker(AT ).

Theorem 5.4.2

If A is an n×m matrix, then ker(A) = ker(ATA). If A is an n×m matrix
with ker(A) = {!0}, then ATA is invertible.

Theorem 5.4.6

If ker(A) = {!0}, then the linear system A!x = !b has the unique least-squares
solution !x∗ = (ATA)−1AT!b.

(Moore-Penrose pseudoinverse)

For any n × m matrix A, there exists a unique matrix A+ which satisfies
the following Penrose equations (i) AA+A = A, (ii) A+AA+ = A+, (iii)
(AA+)T = AA+, (iv) (A+A)T = A+A. The matrix A+ is called the Moore-
Penrose pseudoinverse. If n = m = rank(A), then A+ = A−1. If rank(A) =
m, then A+ = (ATA)−1AT .
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Some Proofs

First go back to the previous section and think how to prove the theorem.
Then, read the proof of the theorem below.

Proof of Theorem 2.4.8 (i), (ii): Consider !x such that A!x = !0. We
have In!x = BA!x = B!0 = !0. Thus !x = !0. Since !x is uniquely determined
in A!x = !0, A is invertible (Theorem 3.1.8). Let us operate A−1 from right:
BAA−1 = InA−1. Hence, B = A−1. We obtain B−1 = (A−1)−1 = A.

(iii): AB = AA−1 = In.

Proof of Theorem 3.2.10 (=⇒) Suppose the vector !v is expressed in
two ways: !v = c1!v1+ · · ·+ cm!vm and !v = c′1!v1+ · · ·+ c′m!vm. By subtraction,
we obtain (c1 − c′1)!v1 + · · · + (cm − c′m)!vm = !0. However, since !v1, . . . ,!vm
are linearly independent, we have c1 = c′1, . . . , cm = c′m.

(⇐=) Consider !v = !0. Obviously !0 is expressed with c1 = · · · = cm = 0.
However, it is uniquely expressed, c1!v1+· · ·+cm!vm = !0 has only the solution
c1 = · · · = cm = 0. This means !v1, . . . ,!vm are linearly independent. They
span V . Therefore they form a basis.

Proof of Theorem 5.1.4 Consider an orthonormal basis !u1, . . . , !um ∈ V
(dim(V ) = m ≤ n). We decompose !x as !x = !x‖+!x⊥, where !x‖ ∈ V . Then we
can write !x‖ = c1!u1+ · · ·+cm!um. We want to choose !x‖ so that !x⊥ = !x−!x‖
is perpendicular to any vector !v ∈ V . We write !v = k1!u1 + · · · + km!um.
Consider !ui ·!x⊥ = !ui ·!x− ci. Therefore, only when ci = !ui ·!x (i = 1, . . . ,m),
we have !v · !x⊥ = 0. The vector !x is uniquely decomposed as !x = !x‖ + !x⊥,
where !x‖ = (!u1 · !x)!u1 + · · ·+ (!um · !x)!um.

Proof of Theorem 5.1.11 Let us consider the function q(t) defined by
q(t) = ||!x+ t!y||2 ≥ 0. By definition, we have

q(t) = (!x+ t!y) · (!x+ t!y) = ||!x||2 + 2t!x · !y + t2||!y||2.

Suppose ||!y|| )= 0. We set t = −!x · !y/||!y||2. We obtain 0 ≤ q(t) = ||!x||2 −
(!x ·!y)2/||!y||2. Therefore, we obtain |!x ·!y| ≤ ||!x|| ||!y||. If !x and !y are parallel,
the equality holds because then we can write !y = k!x with scalar k. If !y = !0
and ||!y|| = 0, we have |!x · !y| = 0 and ||!x|| ||!y|| = 0. The case of ||!y|| = 0 is
included in the above inequality.

Alternative solution Note that !x·!y = ||!x|| ||!y|| cos θ. Since−1 ≤ cos θ ≤ 1,
we have |!x · !y| ≤ ||!x|| ||!y||. The equality holds when !x and !y are parallel.
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Proof of HW5 5) (Ex. 5.3.28) The transformation L is done by an
orthogonal matrix Q = [!u1 . . . !un] (Theorem 5.3.3). We have L(!v) · L(!w) =
(Q!v) · (Q!w) = (v1!u1 + · · ·+ vn!un) · (w1!u1 + · · ·+ wn!un) = v1w1 + · · · +
vnwn = !v · !w.

Proof of HW5 10) (Ex. 5.4.16) Note that dim[image(A)] = rank(A)
(Theorem 3.3.6), dim[ker(A)] + dim[image(A)] = m (Theorem 3.3.7), and
dim[image(A)] + dim[(image(A))⊥] = n (Theorem 5.1.8). Therefore,

rank(A) = dim[image(A)]

= n− dim[(image(A))⊥]

= n− dim[ker(AT )]

= n−
(

n− dim[image(AT )]
)

= dim[image(AT )]

= rank(AT ).

Proof of Theorem 5.4.1 V = image(A) is a subspace of Rn. V ⊥ =

{!x : !vi · !x = 0, i = 1, . . . ,m} = {!x :







!vT1
...

!vTm







!x =







0
...
0







} = {!x : AT!x =

!0} = ker(AT ).

12



More Problems

Go over homework problems. Here are more problems if you need. Solutions
can be found in the textbook.

Chapter 1

1.1.39, 1.2.3, 1.2.5, 1.2.7, 1.2.9, 1.2.11, 1.2.45, 1.2.49, 1.3.47

Chapter 2

2.1.13, 2.1.37, 2.2.7, 2.2.9, 2.2.13, 2.2.19, 2.2.27, 2.2.33, 2.2.37, 2.2.43, 2.3.29,
2.4.77, 2.4.89

Chapter 3

3.1.39, 3.1.47, 3.1.51, 3.2.35, 3.2.49, 3.3.21, 3.3.23, 3.3.25, 3.3.27, 3.3.29,
3.3.71, 3.3.83, 3.4.25, 3.4.27, 3.4.29, 3.4.47, 3.4.55

Chapter 4

4.1.23, 4.1.25, 4.2.67, 4.2.69, 4.3.1, 4.3.3, 4.3.5, 4.3.7, 4.3.9, 4.3.11, 4.3.13,
4.3.61, 4.3.63

Chapter 5

5.1.21, 5.1.27, 5.2.1, 5.2.3, 5.2.5, 5.2.7, 5.2.9, 5.2.11, 5.2.13, 5.3.33, 5.3.45,
5.3.55, 5.4.19, 5.4.21, 5.5.15, 5.5.23
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