Math 419

Review Sheet for Midterm Exam

Terminology

Can you explain these words?

- 1. reduced row-echelon form
- 2. elementary row operations
- 3. consistent
- 4. rank
- 5. linear combination
- 6. linear transformation
- 7. orthogonal projection
- 8. image
- 9. span
- 10. kernel
- 11. linear space
- 12. subspace
- 13. redundant
- 14. linearly independent
- 15. basis
- 16. trivial relation
- 17. dimension
- 18. nullity

- 19. coordinate vector
- 20. the matrix of a linear transformation
- 21. similar matrices
- 22. isomorphism and isomorphic
- 23. change of basis matrix
- 24. orthogonal
- 25. norm
- 26. orthonormal
- 27. Kronecker delta
- 28. orthogonal complement
- 29. Gram-Schmidt process
- 30. QR factorization
- 31. orthogonal transformation and orthogonal matrix
- 32. transpose
- 33. symmetric and skew-symmetric
- 34. least-squares solution
- 35. normal equation
- 36. Moore-Penrose pseudoinverse
- 37. inner product and inner product space
- 38. Fourier coefficients

Reduced row-echelon form: If a row has nonzero entries, then the first nonzero entry is 1 (the leading 1). If a column contains a leading 1, then all the other entries in that column are 0. If a row contains a leading 1, then each row above it contains a leading 1 further to the left. The reduced row-echelon form of a matrix A is expressed as rref(A).

Elementary row operations: To divide a row by a nonzero scalar, to subtract a multiple of a row from another row, and to swap two rows.

Consistent: a system of equations is said to be consistent if there is at least one solution. A system is inconsistent if there is no solution.

Rank: The number of leading 1's in the reduced row-echelon form.

Linear combination: A vector \vec{b} is a linear combination of $\vec{v}_1, \ldots, \vec{v}_m$ if \vec{b} is given by $\vec{b} = x_1 \vec{v}_1 + \cdots + x_m \vec{v}_m$ with scalars x_1, \ldots, x_m .

Linear transformation: A transformation T is a linear transformation if $T(\alpha \vec{v} + \beta \vec{w}) = \alpha T(\vec{v}) + \beta T(\vec{w})$ is satisfied for scalars α , β and vectors \vec{v} , \vec{w} . Then, there exists a matrix A such that $T(\vec{x}) = A\vec{x}$.

Orthogonal projection: For given vector \vec{x} and subspace V, we uniquely have $\vec{x} = \vec{x}_{\parallel} + \vec{x}_{\perp}$, where $\vec{x}_{\parallel} \in V$. We call \vec{x}_{\parallel} denoted by $\operatorname{proj}_{V}(\vec{x})$ the orthogonal projection of \vec{x} onto V.

Image: For an $n \times m$ matrix A, imaga $(A) = \{ \vec{y} \in \mathbb{R}^n : \vec{y} = A\vec{x} \text{ for } \forall \vec{x} \in \mathbb{R}^m \}.$

Span: For vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$, $\operatorname{span}(\vec{v}_1, \ldots, \vec{v}_m) = \{\vec{w} : c_1\vec{v}_1 + \cdots + c_m\vec{v}_m = \vec{w} \text{ with } c_1, \ldots, c_m \in \mathbb{R}\}.$

Kernel: For an $n \times m$ matrix A, $\ker(A) = \{ \vec{x} \in \mathbb{R}^m : A\vec{x} = \vec{0} \}.$

Linear space: A linear space (vector space) V is a set endowed with a rule for addition and a rule for scalar multiplication such that these operations satisfy the following eight rules $(\vec{x}, \vec{y}, \vec{z} \in V \text{ and } \alpha, \beta \in \mathbb{R})$: (i) $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$. (ii) $\vec{x} + \vec{y} = \vec{y} + \vec{x}$. (iii) There exists $\vec{0}$ such that $\vec{x} + \vec{0} = \vec{x}$ for $\forall \vec{x} \in V$. (iv) For each $\vec{x} \in V$, there exists $-\vec{x}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$. (v) $\alpha(\vec{x}+\vec{y}) = \alpha\vec{x}+\beta\vec{y}$. (vi) $(\alpha+\beta)\vec{x} = \alpha\vec{x}+\beta\vec{x}$. (vii) $\alpha(\beta\vec{x}) = (\alpha\beta)\vec{x}$. (viii) $1\vec{x} = \vec{x}.$

Subspace: A subset W of V is called a subspace of V if (i) W contains $\vec{0} \in V$, (ii) W is closed under addition, and (iii) W is closed under scalar multiplication.

Trivial relation: For vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$, we call $c_1 \vec{v}_1 + \cdots + c_m \vec{v}_m = 0$ a (linear) relation. When we choose $c_1 = \cdots = c_m = 0$, the relation is called the trivial relation.

Dimension: The number of vectors in a basis of a subspace V of \mathbb{R}^n is called the dimension of V, denoted by $\dim(V)$.

Nullity: The nullity of matrix A is the dimension of ker(A).

Coordinate vector: Consider a basis $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_m)$ of a subspace V of \mathbb{R}^n . Any vector $\vec{x} \in V$ can be written uniquely as $\vec{x} = c_1 \vec{v}_1 + \cdots + c_m \vec{v}_m$. The scalars c_1, \ldots, c_m are called the \mathcal{B} -coordinates of \vec{x} , and the vector $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix} \text{ is called the } \mathcal{B}\text{-coordinate vector of } \vec{x}.$

The matrix of a linear transformation: Consider a linear transformation T from \mathbb{R}^n to \mathbb{R}^n and a basis \mathcal{B} of \mathbb{R}^n . The $n \times n$ matrix B such that $[T(\vec{x})]_{\mathcal{B}} = B[\vec{x}]_{\mathcal{B}}$ for $\forall \vec{x} \in \mathbb{R}^n$ is called the \mathcal{B} -matrix of T.

Similar matrices: An $n \times n$ matrix A is similar to an $n \times n$ matrix B if there exists an invertible matrix S such that AS = SB or $B = S^{-1}AS$.

Isomorphism and isomorphic: An invertible linear transformation Tis called an isomorphism. We say the linear space V is isomorphic to the linear space W if there exists an isomorphism T from V to W.

Change of basis matrix: For two bases \mathcal{A} and \mathcal{B} of an *n*-dimensional linear space V, consider the linear transformation $L_{\mathcal{A}} \circ L_{\mathcal{B}}^{-1}$ from \mathbb{R}^n to \mathbb{R}^n , or $S_{\mathcal{B}\to\mathcal{A}}\vec{x} = L_{\mathcal{A}}\left(L_{\mathcal{B}}^{-1}(\vec{x})\right)$ for $\forall \vec{x} \in \mathbb{R}^n$. This invertible matrix $S_{\mathcal{B}\to\mathcal{A}}$ is called the change of basis matrix from \mathcal{B} to \mathcal{A} .

Orthogonal: $\vec{v} \cdot \vec{w} = 0$ or more generally $\langle f, g \rangle = 0$. If $\vec{v} \cdot \vec{w} = 0$ for all $\vec{v} \in V$ and $\vec{w} \in W$ for two subspaces V and W of the same linear space, then V and W are said to be orthogonal.

Norm: $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$ or more generally $||\vec{v}|| = \sqrt{\langle f, g \rangle}$.

Orthonormal: The vectors are called orthonormal if they are all unit vectors and orthogonal to one another.

Kronecker delta: $\delta_{ij} = 0$ if $i \neq j$ and = 1 if i = j.

Orthogonal complement: The orthogonal complement V^{\perp} of a subspace V of \mathbb{R}^n is the set of those vectors $\vec{x} \in \mathbb{R}^n$ that are orthogonal to all vectors in V:

$$V^{\perp} = \{ \vec{x} \in \mathbb{R}^n : \vec{v} \cdot \vec{x} = 0 \text{ for } \forall \vec{v} \in V \}.$$

Note that V^{\perp} is the kernel of the orthogonal projection onto V.

Gram-Schmidt process: The Gram-Schmidt process is a method of constructing orthonormal vectors from a set of linearly independent vectors (see Theorem 5.2.1).

QR factorization: Suppose columns of an $n \times m$ matrix M are linearly independent. Then we can uniquely decompose M as M = QR, where the columns of the $n \times m$ matrix Q are orthonormal and R is an $m \times m$ upper triangular matrix with positive diagonal entries.

Orthogonal transformation and orthogonal matrix: A linear transformation T from \mathbb{R}^n to \mathbb{R}^n is called orthogonal if it preserves the lengths of vectors: $||T(\vec{x})|| = ||\vec{x}||$ for $\forall \vec{x} \in \mathbb{R}^n$. If $T(\vec{x}) = A\vec{x}$ is an orthogonal transformation, the matrix A is called an orthogonal matrix.

Transpose: Consider an $m \times n$ matrix A. The transpose A^T of A is the $n \times m$ matrix whose ijth entry is the jith entry of A.

Symmetric and skew-symmetric: We say that a square matrix A is symmetric if $A^T = A$, and skew-symmetric if $A^T = -A$.

Least-squares solution: For a linear system $A\vec{x} = \vec{b}$ with an $n \times m$ matrix A, a vector $\vec{x}^* \in \mathbb{R}^m$ is called a least-squares solution of this system if $||\vec{b} - A\vec{x}^*|| \leq ||\vec{b} - A\vec{x}||$ for $\forall \vec{x} \in \mathbb{R}^m$. The least-squares solutions of the system $A\vec{x} = \vec{b}$ are the exact solutions of the (consistent) system $A^T A\vec{x} = A^T \vec{b}$.

Normal equation: For a system $A\vec{x} = \vec{b}$, the system $A^T A \vec{x} = A^T \vec{b}$ is called the normal equation of $A\vec{x} = \vec{b}$.

Moore-Penrose pseudoinverse: For any $n \times m$ matrix A, there exists a unique matrix A^+ which satisfies the following Penrose equations (i) $AA^+A = A$, (ii) $A^+AA^+ = A^+$, (iii) $(AA^+)^T = AA^+$, (iv) $(A^+A)^T = A^+A$. The matrix A^+ is called the Moore-Penrose pseudoinverse.

Inner product and inner product space: An inner product in a linear space V is a rule that assigns a real scalar $\langle f, g \rangle$ to any pair $f, g \in V$ such that the following properties hold for $\forall f, g, h \in V$, and $\forall c \in \mathbb{R}$: (i) $\langle f, g \rangle = \langle g, f \rangle$. (ii) $\langle f + h, g \rangle = \langle f, g \rangle + \langle h, g \rangle$. (iii) $\langle cf, g \rangle = c \langle f, g \rangle$. (iv) $\langle f, f \rangle > 0$ for all nonzero $f \in V$. A linear space endowed with an inner product is called an inner product space.

Fourier coefficients: Let f(t) be a piecewise continuous function defined on the interval $[-\pi, \pi]$. When f(t) is approximated as $f(t) = \operatorname{proj}_{T_n}(f(t)) = a_0 \frac{1}{\sqrt{2}} + b_1 \sin(t) + c_1 \cos(t) + \cdots + b_n \sin(nt) + c_n \cos(nt)$, the coefficients b_k , c_k , and a_0 are called the Fourier coefficients of f(t).

Several Theorems

Theorem 2.4.8

Let A and B be $n \times n$ matrices such that $BA = I_n$. Then (i) A and B are invertible, (ii) $A^{-1} = B$ and $B^{-1} = A$, and (iii) $AB = I_n$.

Theorem 2.4.9

If A -	$\begin{bmatrix} a \end{bmatrix}$	b	is invertible, then $4^{-1} - 1 \begin{bmatrix} d & -b \end{bmatrix}$
$\Pi A =$	c	d	is invertible, then $A = \frac{1}{ad-bc} \begin{bmatrix} -c & a \end{bmatrix}$.

Theorem 3.1.7

For an $n \times m$ matrix A, ker $(A) = \{\vec{0}\}$ if and only if rank(A) = m.

Theorem 3.1.8, Theorem 3.3.10, and HW3 6)

For an $n \times n$ matrix A, the following statements are equivalent. (i) A is invertible. (ii) $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for $\forall \vec{b} \in \mathbb{R}^n$. (iii) $\operatorname{rref}(A) = I_n$. (iv) $\operatorname{rank}(A) = n$. (v) $\operatorname{image}(A) = \mathbb{R}^n$. (vi) $\operatorname{ker}(A) = \{\vec{0}\}$. (vii) The column vectors of A form a basis of \mathbb{R}^n . (viii) The column vectors of A span \mathbb{R}^n . (ix) The column vectors of A are linearly independent.

Theorem 3.2.9 and HW3 3)

Vectors $\vec{v}_1, \ldots, \vec{v}_m \in \mathbb{R}^n$ are said to be linearly independent if none of $\vec{v}_1, \ldots, \vec{v}_m$ is redundant. The following statements are equivalent. (i) None of \vec{v}_i $(i = 1, \ldots, m)$ is a linear combination of other vectors. (ii) There is only the trivial relation among $\vec{v}_1, \ldots, \vec{v}_m$. (iii) ker $[\vec{v}_1 \ldots \vec{v}_m] = \{\vec{0}\}$. (iv) rank $[\vec{v}_1 \ldots \vec{v}_m] = m$.

Theorem 3.2.10 and HW3 4)

The vectors $\vec{v}_1, \ldots, \vec{v}_m$ in a subspace V of \mathbb{R}^n form a basis of V if and only if every vector $v \in V$ can be expressed uniquely as a linear combination $\vec{v} = c_1 \vec{v}_1 + \cdots + c_m \vec{v}_m$.

Theorem 3.3.2

All bases of a subspace V of \mathbb{R}^n consist of the same number of vectors.

Theorem 3.3.5

If we pick up the column vectors of A that correspond to the columns of $\operatorname{rref}(A)$ containing the leading 1's, then they form a basis of the image of A.

Theorem 3.3.6

For any matrix A, dim(image(A)) = rank(A).

Theorem 3.3.7 (Rank-nullity theorem)

For any $n \times m$ matrix A, dim(ker(A)) + dim(image(A)) = m.

Theorem 4.2.3

Any *n*-dimensional linear space V is isomorphic to \mathbb{R}^n .

Theorem 4.3.2

Let *B* be the matrix of a linear transformation *T* from an *n*-dimensional linear space *V* to *V* with respect to a basis $\mathcal{B} = (\vec{v}_1, \ldots, \vec{v}_n)$ of *V*. Then, $B = \left[[T(\vec{v}_1)]_{\mathcal{B}} \ldots [T(\vec{v}_n)]_{\mathcal{B}} \right].$

Theorem 4.3.4

Consider the change of basis matrix $S_{\mathcal{B}\to\mathcal{A}}$ from a basis $\mathcal{B} = (b_1, \ldots, b_m)$ to another basis $\mathcal{A} = (a_1, \ldots, a_m)$ of a subspace V of \mathbb{R}^n . The change of basis matrix $S_{\mathcal{B}\to\mathcal{A}}$ is given by $S_{\mathcal{B}\to\mathcal{A}} = \left[[b_1]_{\mathcal{A}} \ldots [b_n]_{\mathcal{A}} \right]$ and satisfies $\left[\vec{b}_1 \ldots \vec{b}_m \right] = \left[\vec{a}_1 \ldots \vec{a}_m \right] S_{\mathcal{B}\to\mathcal{A}}.$

Theorem 4.3.5

Let \mathcal{A} and \mathcal{B} be bases of a linear space V. Let A and B be the \mathcal{A} - and \mathcal{B} -matrix of a linear transformation T from V to V. Let $S_{\mathcal{B}\to\mathcal{A}}$ be the change of basis matrix. Then A is similar to B, and $AS_{\mathcal{B}\to\mathcal{A}} = S_{\mathcal{B}\to\mathcal{A}}B$ or $A = S_{\mathcal{B}\to\mathcal{A}}BS_{\mathcal{B}\to\mathcal{A}}^{-1}$ or $B = S_{\mathcal{B}\to\mathcal{A}}^{-1}AS_{\mathcal{B}\to\mathcal{A}}$.

Theorem 5.1.4

For a subspace V of \mathbb{R}^n , any vector $\vec{x} \in \mathbb{R}^n$ can be uniquely written as $\vec{x} = \vec{x}_{\parallel} + \vec{x}_{\perp}$, where \vec{x}_{\parallel} is in V and \vec{x}_{\perp} is perpendicular to V.

Theorem 5.1.5, Theorem 5.1.6

If V is a subspace of \mathbb{R}^n with an orthonormal basis $\vec{u}_1, \ldots, \vec{u}_m$, then $\operatorname{proj}_V(\vec{x}) = \vec{x}_{\parallel} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \cdots + (\vec{u}_m \cdot \vec{x})\vec{u}_m$ for all $\vec{x} \in \mathbb{R}^n$. In particular, any $\vec{x} \in \mathbb{R}^n$ is given by $\vec{x} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \cdots + (\vec{u}_n \cdot \vec{x})\vec{u}_n$, where $\vec{u}_1, \ldots, \vec{u}_n \in \mathbb{R}^n$ form an orthonormal basis.

Theorem 5.1.8

Consider a subspace V of \mathbb{R}^n . (i) V^{\perp} is a subspace of \mathbb{R}^n . (ii) $V \cap V^{\perp} = \{\vec{0}\}$. (iii) $\dim(V) + \dim(V^{\perp}) = n$. (iv) $(V^{\perp})^{\perp} = V$.

Theorem 5.1.9 and HW4 7) (Ex. 5.1.12)

For $\vec{x}, \vec{y} \in \mathbb{R}^n$, the equation $||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2$ holds if and only if \vec{x} and \vec{y} are orthogonal (the Pythagorean theorem). For \vec{x} and \vec{y} , the triangle inequality $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$ always holds.

Theorem 5.1.10

Consider a subspace V of \mathbb{R}^n and a vector $\vec{x} \in \mathbb{R}^n$. Then, $||\operatorname{proj}_V(\vec{x})|| \leq ||\vec{x}||$.

Theorem 5.1.11 and HW4 6) (Cauchy-Schwarz inequality)

If $\vec{x}, \vec{y} \in \mathbb{R}^n$, then $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| \, ||\vec{y}||$.

Theorem 5.2.1 (Gram-Schmidt process)

Consider a basis $\vec{v}_1, \ldots, \vec{v}_m$ of a subspace V of \mathbb{R}^n . For $j = 2, \ldots, m$, we resolve the vector \vec{v}_j into its components parallel and perpendicular to the span of the preceding vectors $\vec{v}_1, \ldots, \vec{v}_{j-1}$: $\vec{v}_j = \vec{v}_j^{\parallel} + \vec{v}_j^{\perp}$ with respect to $\operatorname{span}(\vec{v}_1, \ldots, \vec{v}_{j-1})$. Then $\vec{u}_1 = \vec{v}_1 / ||\vec{v}_1||, \vec{u}_2 = \vec{v}_2^{\perp} / ||\vec{v}_2^{\perp}||, \ldots, \vec{u}_m = \vec{v}_m^{\perp} / ||\vec{v}_m^{\perp}||$ form an orthonormal basis of V. We have $\vec{v}_j^{\perp} = \vec{v}_j - \vec{v}_j^{\parallel} = \vec{v}_j - (\vec{u}_1 \cdot \vec{v}_j)\vec{u}_1 - \cdots - (\vec{u}_{j-1} \cdot \vec{v}_j)\vec{u}_{j-1}$.

Theorem 5.2.2 (QR factorization)

Consider an $n \times m$ matrix M with linearly independent columns $\vec{v}_1, \ldots, \vec{v}_m$. Then there exists an $n \times m$ matrix Q whose columns $\vec{u}_1, \ldots, \vec{u}_m$ are orthonormal and an upper triangular matrix R with positive diagonal entries such that M = QR. This representation is unique. Furthermore, $r_{11} = ||\vec{v}_1||$, $r_{jj} = ||\vec{v}_j^{\perp}|| \ (j = 2, \ldots, m)$, and $r_{ij} = \vec{u}_i \cdot \vec{v}_j \ (i < j)$. Theorem 5.3.3, Theorem 5.3.7, and Theorem 5.3.8

An $n \times n$ matrix A is an orthogonal matrix if $||A\vec{x}|| = ||\vec{x}||$ for $\forall \vec{x} \in \mathbb{R}^n$. The following statements are equivalent: (i) The columns of A from an orthonormal basis of \mathbb{R}^n . (ii) $A^T A = I_n$. (iii) $A^{-1} = A^T$.

HW5 5) (Ex. 5.3.28)

An orthogonal transformation L from \mathbb{R}^n to \mathbb{R}^n preserves the dot product: $\vec{v} \cdot \vec{w} = L(\vec{v}) \cdot L(\vec{w})$, for all \vec{v} and \vec{w} in \mathbb{R}^n .

HW5 10) (Ex. 5.4.16)

 $\operatorname{rank}(A) = \operatorname{rank}(A^T).$

Theorem 5.4.1

For any matrix A, we have $[\operatorname{image}(A)]^{\perp} = \operatorname{ker}(A^T)$.

Theorem 5.4.2

If A is an $n \times m$ matrix, then ker $(A) = \text{ker}(A^T A)$. If A is an $n \times m$ matrix with ker $(A) = \{\vec{0}\}$, then $A^T A$ is invertible.

Theorem 5.4.6

If ker(A) = { $\vec{0}$ }, then the linear system $A\vec{x} = \vec{b}$ has the unique least-squares solution $\vec{x}^* = (A^T A)^{-1} A^T \vec{b}$.

(Moore-Penrose pseudoinverse)

For any $n \times m$ matrix A, there exists a unique matrix A^+ which satisfies the following Penrose equations (i) $AA^+A = A$, (ii) $A^+AA^+ = A^+$, (iii) $(AA^+)^T = AA^+$, (iv) $(A^+A)^T = A^+A$. The matrix A^+ is called the Moore-Penrose pseudoinverse. If $n = m = \operatorname{rank}(A)$, then $A^+ = A^{-1}$. If $\operatorname{rank}(A) = m$, then $A^+ = (A^TA)^{-1}A^T$.

Some Proofs

First go back to the previous section and think how to prove the theorem. Then, read the proof of the theorem below.

Proof of Theorem 2.4.8 (i), (ii): Consider \vec{x} such that $A\vec{x} = \vec{0}$. We have $I_n\vec{x} = BA\vec{x} = B\vec{0} = \vec{0}$. Thus $\vec{x} = \vec{0}$. Since \vec{x} is uniquely determined in $A\vec{x} = \vec{0}$, A is invertible (Theorem 3.1.8). Let us operate A^{-1} from right: $BAA^{-1} = I_nA^{-1}$. Hence, $B = A^{-1}$. We obtain $B^{-1} = (A^{-1})^{-1} = A$. (iii): $AB = AA^{-1} = I_n$.

Proof of Theorem 3.2.10 (\Longrightarrow) Suppose the vector \vec{v} is expressed in two ways: $\vec{v} = c_1\vec{v}_1 + \cdots + c_m\vec{v}_m$ and $\vec{v} = c'_1\vec{v}_1 + \cdots + c'_m\vec{v}_m$. By subtraction, we obtain $(c_1 - c'_1)\vec{v}_1 + \cdots + (c_m - c'_m)\vec{v}_m = \vec{0}$. However, since $\vec{v}_1, \ldots, \vec{v}_m$ are linearly independent, we have $c_1 = c'_1, \ldots, c_m = c'_m$.

(\Leftarrow) Consider $\vec{v} = \vec{0}$. Obviously $\vec{0}$ is expressed with $c_1 = \cdots = c_m = 0$. However, it is uniquely expressed, $c_1\vec{v}_1 + \cdots + c_m\vec{v}_m = \vec{0}$ has only the solution $c_1 = \cdots = c_m = 0$. This means $\vec{v}_1, \ldots, \vec{v}_m$ are linearly independent. They span V. Therefore they form a basis.

Proof of Theorem 5.1.4 Consider an orthonormal basis $\vec{u}_1, \ldots, \vec{u}_m \in V$ $(\dim(V) = m \leq n)$. We decompose \vec{x} as $\vec{x} = \vec{x}_{\parallel} + \vec{x}_{\perp}$, where $\vec{x}_{\parallel} \in V$. Then we can write $\vec{x}_{\parallel} = c_1 \vec{u}_1 + \cdots + c_m \vec{u}_m$. We want to choose \vec{x}_{\parallel} so that $\vec{x}_{\perp} = \vec{x} - \vec{x}_{\parallel}$ is perpendicular to any vector $\vec{v} \in V$. We write $\vec{v} = k_1 \vec{u}_1 + \cdots + k_m \vec{u}_m$. Consider $\vec{u}_i \cdot \vec{x}_{\perp} = \vec{u}_i \cdot \vec{x} - c_i$. Therefore, only when $c_i = \vec{u}_i \cdot \vec{x}$ $(i = 1, \ldots, m)$, we have $\vec{v} \cdot \vec{x}_{\perp} = 0$. The vector \vec{x} is uniquely decomposed as $\vec{x} = \vec{x}_{\parallel} + \vec{x}_{\perp}$, where $\vec{x}_{\parallel} = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \cdots + (\vec{u}_m \cdot \vec{x})\vec{u}_m$.

Proof of Theorem 5.1.11 Let us consider the function q(t) defined by $q(t) = ||\vec{x} + t\vec{y}||^2 \ge 0$. By definition, we have

$$q(t) = (\vec{x} + t\vec{y}) \cdot (\vec{x} + t\vec{y}) = ||\vec{x}||^2 + 2t\vec{x} \cdot \vec{y} + t^2 ||\vec{y}||^2.$$

Suppose $||\vec{y}|| \neq 0$. We set $t = -\vec{x} \cdot \vec{y}/||\vec{y}||^2$. We obtain $0 \leq q(t) = ||\vec{x}||^2 - (\vec{x} \cdot \vec{y})^2/||\vec{y}||^2$. Therefore, we obtain $|\vec{x} \cdot \vec{y}| \leq ||\vec{x}|| ||\vec{y}||$. If \vec{x} and \vec{y} are parallel, the equality holds because then we can write $\vec{y} = k\vec{x}$ with scalar k. If $\vec{y} = \vec{0}$ and $||\vec{y}|| = 0$, we have $|\vec{x} \cdot \vec{y}| = 0$ and $||\vec{x}|| ||\vec{y}|| = 0$. The case of $||\vec{y}|| = 0$ is included in the above inequality.

Alternative solution Note that $\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \theta$. Since $-1 \le \cos \theta \le 1$, we have $|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| ||\vec{y}||$. The equality holds when \vec{x} and \vec{y} are parallel.

Proof of HW5 5) (Ex. 5.3.28) The transformation *L* is done by an orthogonal matrix $Q = [\vec{u}_1 \dots \vec{u}_n]$ (Theorem 5.3.3). We have $L(\vec{v}) \cdot L(\vec{w}) = (Q\vec{v}) \cdot (Q\vec{w}) = (v_1\vec{u}_1 + \dots + v_n\vec{u}_n) \cdot (w_1\vec{u}_1 + \dots + w_n\vec{u}_n) = v_1w_1 + \dots + v_nw_n = \vec{v} \cdot \vec{w}.$

Proof of HW5 10) (Ex. 5.4.16) Note that dim[image(A)] = rank(A) (Theorem 3.3.6), dim[ker(A)] + dim[image(A)] = m (Theorem 3.3.7), and dim[image(A)] + dim[(image(A))^{\perp}] = n (Theorem 5.1.8). Therefore,

r

$$ank(A) = \dim[image(A)]$$

= $n - \dim[(image(A))^{\perp}]$
= $n - \dim[ker(A^T)]$
= $n - (n - \dim[image(A^T)])$
= $\dim[image(A^T)]$
= $rank(A^T).$

Proof of Theorem 5.4.1 V = image(A) is a subspace of \mathbb{R}^n . $V^{\perp} = \{\vec{x} : \vec{v}_i \cdot \vec{x} = 0, i = 1, \dots, m\} = \{\vec{x} : \begin{bmatrix} \vec{v}_1^T \\ \vdots \\ \vec{v}_m^T \end{bmatrix} \vec{x} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}\} = \{\vec{x} : A^T \vec{x} = \vec{0}\} = \ker(A^T).$

More Problems

Go over homework problems. Here are more problems if you need. Solutions can be found in the textbook.

Chapter 1

 $1.1.39,\,1.2.3,\,1.2.5,\,1.2.7,\,1.2.9,\,1.2.11,\,1.2.45,\,1.2.49,\,1.3.47$

Chapter 2

 $\begin{array}{l} 2.1.13,\, 2.1.37,\, 2.2.7,\, 2.2.9,\, 2.2.13,\, 2.2.19,\, 2.2.27,\, 2.2.33,\, 2.2.37,\, 2.2.43,\, 2.3.29,\\ 2.4.77,\, 2.4.89\end{array}$

Chapter 3

Chapter 4

 $\begin{array}{l} 4.1.23,\; 4.1.25,\; 4.2.67,\; 4.2.69,\; 4.3.1,\; 4.3.3,\; 4.3.5,\; 4.3.7,\; 4.3.9,\; 4.3.11,\; 4.3.13,\\ 4.3.61,\; 4.3.63\end{array}$

Chapter 5

 $5.1.21,\ 5.1.27,\ 5.2.1,\ 5.2.3,\ 5.2.5,\ 5.2.7,\ 5.2.9,\ 5.2.11,\ 5.2.13,\ 5.3.33,\ 5.3.45,\ 5.3.55,\ 5.4.19,\ 5.4.21,\ 5.5.15,\ 5.5.23$