Math 214 (Winter '08)

Review for Midterm 2

March 14

Note: These notes are intended to summarize the essential material for Midterm 2. You still have to read the textbook and to review the recent HWs.

Chapter 4

- Linear Space (Def. 4.1.1). To have a linear space V you need to know how to add two elements of V and how to multiply by a scalar (constant). The addition and scalar multiplication satisfy the usual properties. Essential:
(0) $0 \in V$;
(1) closed under addition: $x, y \in V \Longrightarrow x+y \in V$;
(2) closed under scalar multiplication: $x \in V \Longrightarrow c \cdot x \in V$.

Concretely, to say that a certain set V is a linear (sub)space you have to explain that V is closed under addition and scalar multiplication (in our examples the meaning of addition and the scalar multiplication is obvious). Concrete examples: polynomials of certain degree $V=P_{d}$, square matrices $V=M_{n}$, functions with certain properties, etc. To test your understanding explain why the set V of upper diagonal 2×2 matrices form a linear space, but if I require in addition that the matrices in V are invertible, then V is no longer a linear space.

- Linear Transformation (Def. 4.2.1). To check that $T: V \rightarrow W$ is linear you have to check that T
(1) behaves as expected w.r.t. addition: $T(x+y)=T(x)+T(y)$;
(2) behaves as expected w.r.t scalar multiplication: $T(c \cdot x)=c \cdot x \in V$.

In particular, one also have $T(0)=0$. Typical examples: derivatives, multiplications by constant matrices, etc. Let $T: M_{2} \rightarrow M_{2}$ and $A=$ $\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$. Explain why $T(X)=A \cdot X \cdot A$ is linear, but $T(X)=X \cdot A \cdot X$ is not.

- Span, Linear independence, Basis, Dimension (Def. 4.1.3). The key points to remember:
$-[$ basis $]=[$ span $]$ and [linear independent]
$-\quad[$ dimension $]=$ the number of elements in a basis
- in practice to check that something is a basis for V it is enough to check that you have the right numbers of elements and either they span V or that they are linearly independent.
- see (4.1.6) and the related examples for how to find a basis

Concrete examples: find a basis for the upper triangular matrices, for degree 2 polynomials passing through $(-2,2)$, etc. Important examples find a basis for the image of a linear transformation, or for the kernel. Example: let $T: P_{2} \rightarrow P_{2}$ be given by $T(f)=f^{\prime}$, find a basis for $\operatorname{Ker}(T)$ and $\operatorname{Im}(T)$. Note the fundamental result:

$$
\operatorname{dim} \operatorname{Ker}(T)+\operatorname{dim} \operatorname{Im}(T)=\operatorname{dim} V,
$$

where V is the domain of T.

- Isomorphism (4.2.2 and 4.2.4). In practice the easiest way to see that $T: V \rightarrow W$ (a linear transformation) is an isomorphism is to check:
$-\operatorname{dim} V=\operatorname{dim} W$
- and $\operatorname{Ker}(T)=0$, i.e. solve the equation $T(x)=0$ and deduce that the only solution is $x=0$.

Question: is it $T: P_{2} \rightarrow P_{2}$ defined by $T(f)=x f^{\prime}$ an isomorphism? What if $T(f)=x f^{\prime}+f$?

- Coordinates. If we have given a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ for V then we can transform any element x of V in vector $[x]_{\mathcal{B}}$ and work with as if we have $V=\mathbb{R}^{n}$ (the coordinate isomorphism). The role of this is to make the abstract notions of chapter 4 , very concrete (as in the previous chapters). A few important points:

$$
[x]_{\mathcal{B}}=\left[\begin{array}{c}
a_{1} \\
\ldots \\
a_{n}
\end{array}\right]
$$

simply means

$$
x=a_{1} v_{1}+\ldots a_{n} v_{n}
$$

- with respect to the "standard basis" is quite obvious what is the coordinate vector. Say that $V=P_{2}, \mathcal{B}=\left\{x^{2}, x, 1\right\}$ and $f=5 x^{2}+$ $3 x-7$. Then, clearly:

$$
[f]_{\mathcal{B}}=\left[\begin{array}{c}
5 \\
3 \\
-7
\end{array}\right]
$$

- if I try to do the same example as above, but with respect to the exotic basis $\mathcal{A}=\left\{x^{2}+x+1, x+1,1\right\}$ the situation becomes tricky. I need to find a, b, c such that

$$
f=5 x^{2}+3 x-7=a \cdot\left(x^{2}+x+1\right)+b \cdot(x+1)+c \cdot 1
$$

After expanding this becomes a linear system of equations. After solving, I get a, b, c and then

$$
[f]_{\mathcal{A}}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- Alternatively, since I can easily find $[f]_{\mathcal{B}}$, I can use the formula of change of basis:

$$
[f]_{\mathcal{A}}=S_{\mathcal{B} \rightarrow \mathcal{A}} \cdot[f]_{\mathcal{B}}
$$

to compute $[f]_{\mathcal{B}}$. The matrix $\mathcal{B} \rightarrow \mathcal{A}$ is obtained by taking the coordinates of the basis \mathcal{B} with respect to the basis \mathcal{A}, i.e.

$$
S_{\mathcal{B} \rightarrow \mathcal{A}}=\left[\left[v_{1}\right]_{\mathcal{A}}, \ldots,\left[v_{n}\right]_{\mathcal{A}}\right]
$$

Concretely, in our example we express the basis $\mathcal{B}=\left\{x^{2}, x, 1\right\}$ in terms of the basis $\mathcal{A}=\left\{x^{2}+x+1, x+1,1\right\}$, i.e.

$$
\begin{aligned}
x^{2} & =\left(x^{2}+x+1\right)-(x+1) \\
x & =(x+1)-1 \\
1 & =1
\end{aligned}
$$

Thus,

$$
S_{\mathcal{B} \rightarrow \mathcal{A}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

And, we get

$$
[f]_{\mathcal{A}}=S_{\mathcal{B} \rightarrow \mathcal{A}} \cdot[f]_{\mathcal{B}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
5 \\
3 \\
-7
\end{array}\right]=\left[\begin{array}{c}
5 \\
2 \\
-10
\end{array}\right]
$$

(compare with the direct approach to compute $[x]_{\mathcal{A}}$).

- Note the important formula:

$$
S_{\mathcal{B} \rightarrow \mathcal{A}}=\left(S_{\mathcal{A} \rightarrow \mathcal{B}}\right)^{-1}
$$

- Note also that $S_{\mathcal{A} \rightarrow \mathcal{B}}$ it is easy to find (compute it!).
- The matrix of a linear transformation. You have $T: V \rightarrow V$, and $\mathcal{B}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ a basis. Then T is given (as in the case $V=\mathbb{R}^{n}$) by a $n \times n$ matrix B (s.t. $[T(x)]_{\mathcal{B}}=B \cdot[x]_{\mathcal{B}}$). The key formula is
$-B=\left[\left[T\left(v_{1}\right)\right]_{\mathcal{B}}, \ldots,\left[T\left(v_{n}\right)\right]_{\mathcal{B}}\right]$, i.e. the columns of the matrix B are the coordinate vectors of the transforms (by T) of the basis vectors.

Example: compute the matrix of the linear transformation $T: P_{2} \rightarrow P_{2}$, where $T(f)=x \cdot f^{\prime}+f$ with respect to the standard basis $\mathcal{B}=\left\{x^{2}, x, 1\right\}$. Now do the same with respect to the non-standard basis $\mathcal{A}=\left\{x^{2}+x+\right.$ $1, x+1,1\}$ (you should get another matrix A representing T). This can be done (and should be done for practice) in two ways:

- the same type of computations as for \mathcal{B}
- by using the base change formula:

$$
A=S \cdot B \cdot S^{-1}
$$

where $S=S_{\mathcal{B} \rightarrow \mathcal{A}}$ (N.B. S^{-1} can be computed as the inverse of S or by $S^{-1}=S_{\mathcal{A} \rightarrow \mathcal{B}}$).

Chapter 5

- Orthogonal vectors, Orthonormal basis. A few important points:
$-\quad[$ orthonormal $]=\left[\right.$ ortho] (i.e. $u_{i} . u_{j}=0$ if $i \neq j$) and [normal] (i.e. $\left.\left\|u_{i}\right\|=1\right)$;
- if $\left\{u_{1}, \ldots, u_{n}\right\}$ are orthonormal, then they are linearly independent. Thus to check that $\left\{u_{1}, \ldots, u_{n}\right\}$ form an orthonormal basis for some linear subspace V it is enough to check that: (the vectors are orthonormal) and (the right number of vectors, i.e. $n=\operatorname{dim} V$).
- With respect to orthonormal bases it is easy to compute coordinates and projections. Let V a linear subspace (in some \mathbb{R}^{N}) and $\mathcal{B}=\left\{u_{1}, \ldots, u_{n}\right\}$ an orthonormal basis. The following two formulas are essential:
- if $x \in V$, then

$$
[x]_{\mathcal{B}}=\left[\begin{array}{c}
u_{1} \cdot x \\
\ldots \\
u_{n} \cdot x
\end{array}\right]
$$

(the coordinates are computed by taking the dot product).

- For any x (not necessary in V), the orthogonal projection on V is computed by

$$
x^{\|}=\operatorname{proj}_{v}(x)=\left(x . u_{1}\right) u_{1}+\ldots\left(x . u_{n}\right) u_{n} .
$$

Note also that

$$
x=x^{\|}+x^{\perp}
$$

In the Gram-Schmidt algorithm, you need x^{\perp}, which is computed by $x^{\perp}=x-x^{\|}$and the previous formula.

- Gram-Schmidt (see 5.2). You are given an arbitrary basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for V and want to find an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$. The idea is quite simple: it easy to get norm 1 (just normalize the vectors), the hard part is to obtain "ortho"; this is done by computing the orthogonal projection. Specifically:
(Step 1) Normalize v_{1}, i.e. $u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}$
(Step 2) Compute v_{2}^{\perp} as explained above, i.e.

$$
v_{2}^{\perp}=v_{2}-\left(v_{2} \cdot u_{1}\right) u_{1}
$$

(Step 3) Normalize v_{2}^{\perp}, i.e. $u_{2}=\frac{v_{2}^{\perp}}{\left\|v_{2}^{\perp}\right\|}$
(Step 4) Compute v_{3}^{\perp} (w.r.t. u_{1}, u_{2})

$$
v_{3}^{\perp}=v_{3}-\left(v_{3} \cdot u_{1}\right) u_{1}-\left(v_{3} \cdot u_{2}\right) u_{2}
$$

(Step 5) Normalize v_{3}^{\perp}
(etc.)

- To compute an orthogonal basis for a linear space V (e.g. $\operatorname{Ker}(A)$, $\operatorname{Im}(A)$), you first need to find a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ (as we did in the previous chapters), and then apply Gram-Schmidt to get an orthonormal basis. Recall that to find a basis for $\operatorname{Im}(A)$ you simply have to remove the redundant vectors among the columns of A. To find a basis for $\operatorname{Ker}(A)$ you have to find the relations between the columns vectors of A.
- Suppose that you are given a linear subspace V, then the orthogonal complement $V \perp$ is defined as the set of vectors orthogonal on V. To find V^{\perp} you have to solve the linear system

$$
\begin{aligned}
& x \cdot v_{1}=0 \\
& \ldots \\
& x \cdot v_{n}=0
\end{aligned}
$$

where v_{1}, \ldots, v_{n} is a basis for V. The orthogonal complement has complementary dimension to V, i.e.

$$
\operatorname{dim} V+\operatorname{dim} V^{\perp}=N
$$

where N is the dimension of the ambient space (V is a subspace in some $\left.\mathbb{R}^{\mathbb{N}}\right)$. Example: Let $V=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right)$. Then V^{\perp} is 1dimensional (since $\operatorname{dim} V=2$ and $\operatorname{dim} V^{\perp}+\operatorname{dim} V=3$) and V^{\perp} contains all the vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ orthogonal to $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. This means

$$
\begin{aligned}
a+2 b+3 c & =0 \\
4 a+5 b+6 c & =0
\end{aligned}
$$

You have to solve for a, b, c (i.e. express a, b in terms of the free variable $c)$. Since V^{\perp} is 1 -dimensional, a basis is given by a non-trivial solution of the previous linear system (just set the free variable c to some random non-zero value).

- In fancy words, in the previous example $V=\operatorname{Im}(A)$ and $V^{\perp}=\operatorname{Ker}\left(A^{T}\right)$ (see 5.4.1), where

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \quad \text { and } \quad A^{T}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

This means that V is spanned by the column vectors of A, and V^{\perp} is obtained by solving the linear system $A^{T} \cdot x$ (i.e. the linear system considered a few lines above).

- Orthogonal Transformations/Matrices. A linear transformation $T: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{n} is orthogonal if it preserves the norm: $\|T(x)\|=\|x\|$. An orthogonal transformation automatically preserves also the angles, i.e. $x \perp y \Longrightarrow$ $T(x) \perp T(y)$. This gives an alternative characterization of orthogonal transformations:
$-T$ is orthogonal if and only if $\left\{T\left(e_{1}\right), \ldots T\left(e_{n}\right)\right\}$ forms an orthonormal basis.

The same thing in terms of the matrix A representing T is:

- A is orthogonal if and only if the columns of A form an orthogonal basis

The important fact about orthogonal matrices is that it is easy to invert:

- $A^{-1}=A^{T}$, where A^{T} is the transpose of A (the columns of A^{T} are the rows of A).
- Least square In many situations we are not able to solve precisely the linear system:

$$
A x=b
$$

In fact, the linear system can be solved only if $b \in \operatorname{Im}(A)$. To find an approximate solution, we project b onto $V=\operatorname{Im}(A)$. Namely, $A x=$ $\operatorname{proj}_{V} b$ has always a solution x^{*} and this solution is optimal, in the sense that it minimizes the error:

$$
\text { Error }=\left\|b-A x^{*}\right\|=\left\|b-\operatorname{proj}_{V} b\right\|
$$

- Concretely, to get the best approximate solution to a linear system $A x=b$, we solve the linear system

$$
A^{T} A x^{*}=A^{T} b
$$

This system has always a solution x^{*}, which is the optimal approximate solution. Note also

$$
\operatorname{proj}_{V} b=A x^{*}=A\left(A^{T} A\right)^{-1} A^{T} b
$$

(if $\operatorname{Ker}(A)=0$). If A is orthogonal, the formula simplifies to

$$
\operatorname{proj}_{V} b=A x^{*}=A A^{T} b
$$

