Math 214 (Winter *08)

Review for Midterm 2
March 14

Note: These notes are intended to summarize the essential material for
Midterm 2. You still have to read the textbook and to review the recent HWs.

Chapter 4

e Linear Space (Def. 4.1.1). To have a linear space V you need to know how
to add two elements of V' and how to multiply by a scalar (constant). The
addition and scalar multiplication satisfy the usual properties. Essential:

(0) 0eV;

(1) closed under addition: z,y € V= +y € V;

(2) closed under scalar multiplication: z € V= c-z € V.
Concretely, to say that a certain set V' is a linear (sub)space you have
to explain that V' is closed under addition and scalar multiplication (in
our examples the meaning of addition and the scalar multiplication is
obvious). Concrete examples: polynomials of certain degree V. = Py,
square matrices V' = M, functions with certain properties, etc. To test
your understanding explain why the set V of upper diagonal 2 x 2 matrices

form a linear space, but if I require in addition that the matrices in V are
invertible, then V is no longer a linear space.

e Linear Transformation (Def. 4.2.1). To check that T : V' — W is linear
you have to check that T
(1) behaves as expected w.r.t. addition: T(x +y) = T(x) + T(y);
(2) behaves as expected w.r.t scalar multiplication: T(c-z) =c-z € V.
In particular, one also have T'(0) = 0. Typical examples: derivatives,
multiplications by constant matrices, etc. Let T : My — My and A =
[ 2 -1 } Explain why T(X) = A- X - A is linear, but T(X) = X - A- X

3 1
is not.

e Span, Linear independence, Basis, Dimension (Def. 4.1.3). The key points
to remember:

— [basis] = [span] and [linear independent]

— [dimension]= the number of elements in a basis



— in practice to check that something is a basis for V' it is enough to
check that you have the right numbers of elements and either they
span V or that they are linearly independent.

— see (4.1.6) and the related examples for how to find a basis

Concrete examples: find a basis for the upper triangular matrices, for
degree 2 polynomials passing through (—2,2), etc. Important examples
find a basis for the image of a linear transformation, or for the kernel.
Example: let T : P, — P be given by T'(f) = f/, find a basis for Ker(T)
and Im(T). Note the fundamental result:

dim Ker(T) + dim Im(T) = dim V,

where V is the domain of T'.

Isomorphism (4.2.2 and 4.2.4). In practice the easiest way to see that
T:V — W (a linear transformation) is an isomorphism is to check:

— dimV =dim W

— and Ker(T) = 0, i.e. solve the equation T'(z) = 0 and deduce that
the only solution is x = 0.

Question: isit T : P, — P, defined by T'(f) = «f’ an isomorphism? What
i T(f) = af + 17

Coordinates. If we have given a basis B = {vy,...,v,} for V then we can
transform any element x of V' in vector [z]s and work with as if we have
V = R” (the coordinate isomorphism). The role of this is to make the
abstract notions of chapter 4, very concrete (as in the previous chapters).
A few important points:

2] =
an
simply means
T =a1V1 + ...0,0n

— with respect to the “standard basis” is quite obvious what is the
coordinate vector. Say that V = P, B = {22, 2,1} and f = 522 +
3z — 7. Then, clearly:

fls=1| 3
-7



— if T try to do the same example as above, but with respect to the
exotic basis A = {22+ x + 1,2 + 1,1} the situation becomes tricky.
I need to find a, b, ¢ such that

f=b+3z—-T=a-(2*+2+1)+b-(x+1)+c-1

After expanding this becomes a linear system of equations. After
solving, I get a, b, c and then

a

fla=1] 0

c

— Alternatively, since I can easily find [f]s, I can use the formula of
change of basis:

to compute [f]g. The matrix B — A is obtained by taking the coor-
dinates of the basis B with respect to the basis A, i.e.
Spoa = [[v1]a, ..., [vn] 4]

Concretely, in our example we express the basis B = {22 x,1} in
terms of the basis A = {2? + 2+ 1,2 + 1,1}, i.e.

2

2 = (P +z+1)—(x+1)
x = (x+1)-1
1 =1
Thus,
1 0 0
Sg_a=1] -1 1 0
0 -1 0
And, we get
1 0 0 5 5
fla=Sp—a-[fls=| -1 1 0| 3 |=]| 2
0O -1 0 -7 —10

(compare with the direct approach to compute [z] 4).

— Note the important formula:
Spa = (Sa-p)""

— Note also that S4_,pg it is easy to find (compute it!).



e The matriz of a linear transformation. You have T : V — V, and B =
{v1,...,v,} a basis. Then T is given (as in the case V =R") by an xn
matrix B (s.t. [T'(z)]g = B - [z]). The key formula is

— B = [[T(n)]B,---,[T(vy)]B], i-e. the columns of the matrix B are
the coordinate vectors of the transforms (by T') of the basis vectors.

Example: compute the matrix of the linear transformation T : P, — P,
where T(f) = 2 - f' + f with respect to the standard basis B = {22, z,1}.
Now do the same with respect to the non-standard basis A = {2? + z +
1,z + 1,1} (you should get another matrix A representing 7). This can
be done (and should be done for practice) in two ways:

— the same type of computations as for B

— by using the base change formula:
A=S-B-S71
where S = Sp_.4 (N.B. S7! can be computed as the inverse of S or

by S~! = Su_p).

Chapter 5

e Orthogonal vectors, Orthonormal basis. A few important points:

— [orthonormal]=[ortho] (i.e. w;u; = 0 if i # j) and [normal] (i.e.

[uill = 1);
— if {w1,...,u,} are orthonormal, then they are linearly independent.
Thus to check that {uq,...,u,} form an orthonormal basis for some

linear subspace V' it is enough to check that: (the vectors are or-
thonormal) and (the right number of vectors, i.e. n =dim V).

e With respect to orthonormal bases it is easy to compute coordinates and
projections. Let V a linear subspace (in some RY) and B = {uy,...,u,}
an orthonormal basis. The following two formulas are essential:

— ifz € V, then
[z]s =
Up, .
(the coordinates are computed by taking the dot product).

— For any z (not necessary in V'), the orthogonal projection on V is
computed by

2l = proj,(z) = (zauy)uy + . .. (2.0, .



Note also that
=zl 42t

In the Gram-Schmidt algorithm, you need z*, which is computed by

2zt = 2 — z!l and the previous formula.
e Gram-Schmidt (see 5.2). You are given an arbitrary basis {vy,...,v,} for
V and want to find an orthonormal basis {u1,...,u,}. The idea is quite

simple: it easy to get norm 1 (just normalize the vectors), the hard part
is to obtain “ortho”; this is done by computing the orthogonal projection.
Specifically:

(Step 1) Normalize vy, i.e. uy = Tl

(Step 2) Compute v3 as explained above, i.e.

1}2L = vy — (va.u1)ug

£
(Step 3) Normalize vy, i.e. uy = IIZiH

2
(Step 4) Compute v3 (wW.r.t. uy, ug)

'UPJ; = vy — (vs.u1)ug — (vs.uz)ug

(Step 5) Normalize v

(etc.)

e To compute an orthogonal basis for a linear space V (e.g. Ker(A),
Im(A)), you first need to find a basis {v1,...,v,} (as we did in the previ-
ous chapters), and then apply Gram-Schmidt to get an orthonormal basis.
Recall that to find a basis for Im(A) you simply have to remove the re-
dundant vectors among the columns of A. To find a basis for Ker(A) you
have to find the relations between the columns vectors of A.

e Suppose that you are given a linear subspace V, then the orthogonal
complement V L is defined as the set of vectors orthogonal on V. To find
VL you have to solve the linear system

zvy = 0
zv, = 0
where v1,...,v, is a basis for V. The orthogonal complement has com-

plementary dimension to V, i.e.

dimV 4+dimV+t =N



where N is the dimension of the ambient space (V is a subspace in

1 4
some RY). Example: Let V = Span 21,15 . Then V+* is 1-
3 6
dimensional (since dim V = 2 and dim V+ + dim V = 3) and V- contains
a 1 4
all the vectors | b | orthogonal to | 2 | and | 5 |. This means
c 3 6
a+2b+3c =
4a +5b+6c =

You have to solve for a, b, ¢ (i.e. express a, b in terms of the free variable
c). Since V= is 1-dimensional, a basis is given by a non-trivial solution
of the previous linear system (just set the free variable ¢ to some random
non-zero value).

In fancy words, in the previous example V = Im(A) and V+ = Ker(AT)
(see 5.4.1), where

1 4
A=1]2 5 and AT:HEH'
3 6

This means that V is spanned by the column vectors of A, and V= is ob-
tained by solving the linear system AT -z (i.e. the linear system considered
a few lines above).

Orthogonal Transformations/Matrices. A linear transformation T : R” —
R™ is orthogonal if it preserves the norm: ||T(z)|| = ||z||. An orthogonal
transformation automatically preserves also the angles, ie. =z 1 y —
T(z) L T(y). This gives an alternative characterization of orthogonal
transformations:

— T is orthogonal if and only if {T'(e;1),...T(e,)} forms an orthonormal
basis.

The same thing in terms of the matrix A representing 7T is:

— A is orthogonal if and only if the columns of A form an orthogonal
basis

The important fact about orthogonal matrices is that it is easy to invert:

— A7! = AT where AT is the transpose of A (the columns of AT are
the rows of A).



e Least square In many situations we are not able to solve precisely the
linear system:

Az =D

In fact, the linear system can be solved only if b € Im(A). To find an
approximate solution, we project b onto V. = Im(A). Namely, Az =
projyb has always a solution x* and this solution is optimal, in the sense
that it minimizes the error:

Error = ||b — Ax™|| = ||b — projvb||

e Concretely, to get the best approximate solution to a linear system Ax = b,
we solve the linear system

AT Az = ATh

This system has always a solution z*, which is the optimal approximate
solution. Note also

projyb = Az* = A(ATA)~1ATh
(if Ker(A) =0). If A is orthogonal, the formula simplifies to

projyb = Az* = AATD.



