
Math 214 (Winter ’08)

Review for Midterm 2

March 14

Note: These notes are intended to summarize the essential material for
Midterm 2. You still have to read the textbook and to review the recent HWs.

Chapter 4

• Linear Space (Def. 4.1.1). To have a linear space V you need to know how
to add two elements of V and how to multiply by a scalar (constant). The
addition and scalar multiplication satisfy the usual properties. Essential:

(0) 0 2 V ;

(1) closed under addition: x, y 2 V =) x + y 2 V ;

(2) closed under scalar multiplication: x 2 V =) c · x 2 V .

Concretely, to say that a certain set V is a linear (sub)space you have
to explain that V is closed under addition and scalar multiplication (in
our examples the meaning of addition and the scalar multiplication is
obvious). Concrete examples: polynomials of certain degree V = Pd,
square matrices V = Mn, functions with certain properties, etc. To test
your understanding explain why the set V of upper diagonal 2⇥2 matrices
form a linear space, but if I require in addition that the matrices in V are
invertible, then V is no longer a linear space.

• Linear Transformation (Def. 4.2.1). To check that T : V ! W is linear
you have to check that T

(1) behaves as expected w.r.t. addition: T (x + y) = T (x) + T (y);

(2) behaves as expected w.r.t scalar multiplication: T (c · x) = c · x 2 V .

In particular, one also have T (0) = 0. Typical examples: derivatives,
multiplications by constant matrices, etc. Let T : M2 ! M2 and A =

2 �1
3 1

�
. Explain why T (X) = A ·X ·A is linear, but T (X) = X ·A ·X

is not.

• Span, Linear independence, Basis, Dimension (Def. 4.1.3). The key points
to remember:

– [basis] = [span] and [linear independent]

– [dimension]= the number of elements in a basis



– in practice to check that something is a basis for V it is enough to
check that you have the right numbers of elements and either they
span V or that they are linearly independent.

– see (4.1.6) and the related examples for how to find a basis

Concrete examples: find a basis for the upper triangular matrices, for
degree 2 polynomials passing through (�2, 2), etc. Important examples
find a basis for the image of a linear transformation, or for the kernel.
Example: let T : P2 ! P2 be given by T (f) = f

0, find a basis for Ker(T )
and Im(T ). Note the fundamental result:

dim Ker(T ) + dim Im(T ) = dim V,

where V is the domain of T .

• Isomorphism (4.2.2 and 4.2.4). In practice the easiest way to see that
T : V !W (a linear transformation) is an isomorphism is to check:

– dim V = dim W

– and Ker(T ) = 0, i.e. solve the equation T (x) = 0 and deduce that
the only solution is x = 0.

Question: is it T : P2 ! P2 defined by T (f) = xf

0 an isomorphism? What
if T (f) = xf

0 + f?

• Coordinates. If we have given a basis B = {v1, . . . , vn} for V then we can
transform any element x of V in vector [x]B and work with as if we have
V = Rn (the coordinate isomorphism). The role of this is to make the
abstract notions of chapter 4, very concrete (as in the previous chapters).
A few important points:

–

[x]B =

2

4
a1

. . .

an

3

5

simply means
x = a1v1 + . . . anvn

– with respect to the “standard basis” is quite obvious what is the
coordinate vector. Say that V = P2, B = {x2

, x, 1} and f = 5x

2 +
3x� 7. Then, clearly:

[f ]B =

2

4
5
3
�7

3

5

2



– if I try to do the same example as above, but with respect to the
exotic basis A = {x2 + x + 1, x + 1, 1} the situation becomes tricky.
I need to find a, b, c such that

f = 5x

2 + 3x� 7 = a · (x2 + x + 1) + b · (x + 1) + c · 1

After expanding this becomes a linear system of equations. After
solving, I get a, b, c and then

[f ]A =

2

4
a

b

c

3

5

– Alternatively, since I can easily find [f ]B, I can use the formula of
change of basis:

[f ]A = SB!A · [f ]B

to compute [f ]B. The matrix B ! A is obtained by taking the coor-
dinates of the basis B with respect to the basis A, i.e.

SB!A = [[v1]A, . . . , [vn]A]

Concretely, in our example we express the basis B = {x2
, x, 1} in

terms of the basis A = {x2 + x + 1, x + 1, 1}, i.e.

x

2 = (x2 + x + 1)� (x + 1)
x = (x + 1)� 1
1 = 1

Thus,

SB!A =

2

4
1 0 0
�1 1 0
0 �1 0

3

5

And, we get

[f ]A = SB!A · [f ]B =

2

4
1 0 0
�1 1 0
0 �1 0

3

5 ·

2

4
5
3
�7

3

5 =

2

4
5
2
�10

3

5

(compare with the direct approach to compute [x]A).

– Note the important formula:

SB!A = (SA!B)�1

– Note also that SA!B it is easy to find (compute it!).
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• The matrix of a linear transformation. You have T : V ! V , and B =
{v1, . . . , vn} a basis. Then T is given (as in the case V = Rn) by a n⇥ n

matrix B (s.t. [T (x)]B = B · [x]B). The key formula is

– B = [[T (v1)]B, . . . , [T (vn)]B], i.e. the columns of the matrix B are
the coordinate vectors of the transforms (by T ) of the basis vectors.

Example: compute the matrix of the linear transformation T : P2 ! P2,
where T (f) = x · f 0 + f with respect to the standard basis B = {x2

, x, 1}.
Now do the same with respect to the non-standard basis A = {x2 + x +
1, x + 1, 1} (you should get another matrix A representing T ). This can
be done (and should be done for practice) in two ways:

– the same type of computations as for B
– by using the base change formula:

A = S · B · S�1
,

where S = SB!A (N.B. S

�1 can be computed as the inverse of S or
by S

�1 = SA!B).

Chapter 5

• Orthogonal vectors, Orthonormal basis. A few important points:

– [orthonormal]=[ortho] (i.e. ui.uj = 0 if i 6= j) and [normal] (i.e.
||ui|| = 1);

– if {u1, . . . , un} are orthonormal, then they are linearly independent.
Thus to check that {u1, . . . , un} form an orthonormal basis for some
linear subspace V it is enough to check that: (the vectors are or-
thonormal) and (the right number of vectors, i.e. n = dimV ).

• With respect to orthonormal bases it is easy to compute coordinates and
projections. Let V a linear subspace (in some RN ) and B = {u1, . . . , un}
an orthonormal basis. The following two formulas are essential:

– if x 2 V , then

[x]B =

2

4
u1.x

. . .

un.x

3

5

(the coordinates are computed by taking the dot product).

– For any x (not necessary in V ), the orthogonal projection on V is
computed by

x

|| = projv(x) = (x.u1)u1 + . . . (x.un)un.
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Note also that
x = x

|| + x

?

In the Gram-Schmidt algorithm, you need x

?, which is computed by
x

? = x� x

|| and the previous formula.

• Gram-Schmidt (see 5.2). You are given an arbitrary basis {v1, . . . , vn} for
V and want to find an orthonormal basis {u1, . . . , un}. The idea is quite
simple: it easy to get norm 1 (just normalize the vectors), the hard part
is to obtain “ortho”; this is done by computing the orthogonal projection.
Specifically:

(Step 1) Normalize v1, i.e. u1 = v1
||v1||

(Step 2) Compute v

?
2 as explained above, i.e.

v

?
2 = v2 � (v2.u1)u1

(Step 3) Normalize v

?
2 , i.e. u2 = v?2

||v?2 ||

(Step 4) Compute v

?
3 (w.r.t. u1, u2)

v

?
3 = v3 � (v3.u1)u1 � (v3.u2)u2

(Step 5) Normalize v

?
3

(etc.)

• To compute an orthogonal basis for a linear space V (e.g. Ker(A),
Im(A)), you first need to find a basis {v1, . . . , vn} (as we did in the previ-
ous chapters), and then apply Gram-Schmidt to get an orthonormal basis.
Recall that to find a basis for Im(A) you simply have to remove the re-
dundant vectors among the columns of A. To find a basis for Ker(A) you
have to find the relations between the columns vectors of A.

• Suppose that you are given a linear subspace V , then the orthogonal
complement V? is defined as the set of vectors orthogonal on V . To find
V

? you have to solve the linear system

x.v1 = 0
. . .

x.vn = 0

where v1, . . . , vn is a basis for V . The orthogonal complement has com-
plementary dimension to V , i.e.

dim V + dim V

? = N
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where N is the dimension of the ambient space (V is a subspace in

some RN). Example: Let V = Span

0

@

2

4
1
2
3

3

5
,

2

4
4
5
6

3

5

1

A. Then V

? is 1-

dimensional (since dim V = 2 and dim V

? + dim V = 3) and V

? contains

all the vectors

2

4
a

b

c

3

5 orthogonal to

2

4
1
2
3

3

5 and

2

4
4
5
6

3

5. This means

a + 2b + 3c = 0
4a + 5b + 6c = 0

You have to solve for a, b, c (i.e. express a, b in terms of the free variable
c). Since V

? is 1-dimensional, a basis is given by a non-trivial solution
of the previous linear system (just set the free variable c to some random
non-zero value).

• In fancy words, in the previous example V = Im(A) and V

? = Ker(AT )
(see 5.4.1), where

A =

2

4
1 4
2 5
3 6

3

5 and A

T =


1 2 3
4 5 6

�
.

This means that V is spanned by the column vectors of A, and V

? is ob-
tained by solving the linear system A

T ·x (i.e. the linear system considered
a few lines above).

• Orthogonal Transformations/Matrices. A linear transformation T : Rn !
Rn is orthogonal if it preserves the norm: ||T (x)|| = ||x||. An orthogonal
transformation automatically preserves also the angles, i.e. x ? y =)
T (x) ? T (y). This gives an alternative characterization of orthogonal
transformations:

– T is orthogonal if and only if {T (e1), . . . T (en)} forms an orthonormal
basis.

The same thing in terms of the matrix A representing T is:

– A is orthogonal if and only if the columns of A form an orthogonal
basis

The important fact about orthogonal matrices is that it is easy to invert:

– A

�1 = A

T , where A

T is the transpose of A (the columns of A

T are
the rows of A).
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• Least square In many situations we are not able to solve precisely the
linear system:

Ax = b

In fact, the linear system can be solved only if b 2 Im(A). To find an
approximate solution, we project b onto V = Im(A). Namely, Ax =
projV b has always a solution x

⇤ and this solution is optimal, in the sense
that it minimizes the error:

Error = ||b�Ax

⇤|| = ||b� projV b||

• Concretely, to get the best approximate solution to a linear system Ax = b,
we solve the linear system

A

T
Ax

⇤ = A

T
b

This system has always a solution x

⇤, which is the optimal approximate
solution. Note also

projV b = Ax

⇤ = A(AT
A)�1

A

T
b

(if Ker(A) = 0). If A is orthogonal, the formula simplifies to

projV b = Ax

⇤ = AA

T
b.
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