Math 214 (Winter '08)
 Midterm 1

February 7, 2008

Time: 90 minutes
1 (10 points). Solve the linear system:

$$
\begin{aligned}
x+2 y+3 z & =1 \\
4 x+5 y+6 z & =4 \\
7 x+8 y+9 z & =9
\end{aligned}
$$

(for full credit you need to use the matrix form).

2 (10 points). Which of the following sets are a linear subspace (explain your answer):
i)

$$
W=\left\{\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]: x+y=z+t+1\right\}
$$

ii)

$$
W=\left\{\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]: x+y=z+t\right\}
$$

iii)

$$
W=\left\{(x, y) \in \mathbb{R}^{2}: x=y^{2}\right\}
$$

iv)

$$
W=\left\{\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -4
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x, y, z \text { arbitrary constants }\right\}
$$

v) W is the set of polynomials of degree at most 2 .

3 (15 points). For which values of k is the matrix

$$
A=\left[\begin{array}{ccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & k
\end{array}\right]
$$

invertible. If A is invertible, explain how to find the inverse of A and illustrate a few steps of the computation (you don't need to do the complete computation of A^{-1}).

4 (10 points). For the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

describe the images and kernels of the matrices A, A^{2}, and A^{3} geometrically.

5 (20 points). Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation given by

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 5 & 8 & 3 \\
4 & 9 & 14 & 11
\end{array}\right]
$$

a) What are the dimensions of $\operatorname{Im}(T)$ and $\operatorname{Ker}(T)$? What relation do they satisfy?
b) Find a basis of $\operatorname{Im}(T)$.
c) Find a basis of $\operatorname{Ker}(T)$.

6 (10 points). Let V be the subspace of \mathbb{R}^{4} defined by the equation

$$
2 x_{1}-x_{2}+2 x_{3}+4 x_{4}=0
$$

Find a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ such that $\operatorname{Ket}(T)=0$ and $\operatorname{Im}(T)=V$. Describe T by its matrix A. Explain why $\operatorname{Ket}(T)=0$.

7 (15 points).
i) Find a basis for the linear span of the vectors $\vec{w}_{1}, \ldots \vec{w}_{5}$, where

$$
\vec{w}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{w}_{3}=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right], \quad \vec{w}_{4}=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right], \quad \text { and } \quad \vec{w}_{5}=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]
$$

ii) Give a basis of \mathbb{R}^{4} that contains the vectors \vec{v}_{1} and \vec{v}_{2}, where

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

8 (10 points). Suppose that X is 2×2 matrix satisfying $A X B=C$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad \text { and } C=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

Find X.

