
Math 419 (Fall ’08)

Midterm 1
October 7, 2008

Time: 80 minutes

1 (10 points). Is there a sequence of elementary row operations that transforms
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Explain.



2 (10 points) Find a 3⇥ 3 matrix A such that
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where

i) k = 1;

ii) k = 0.

What is the (qualitative) di↵erence?
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3 (10 points) Find the inverse of the linear transformation
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4 (20 points). Let V be the subspace of R5 defined by the equations

2x1 � x2 + 2x3 + 4x4 + x5 = 0
x1 + x3 + 2x4 = 0

i) Show that V is a linear subspace.

ii) Give a linear transformation S such that V = KerS.

iii) Give a linear transformation T such that V = ImT .

iv) Find a basis of V .
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5 (15 points). Let T : Rn ! Rm be the linear transformation associated to the matrix:

A =

2

664

1 2 3 2 1
3 6 9 6 3
1 2 4 1 2
2 4 9 1 2

3

775

a) What is n and m? What are the dimensions of Im(T ) and Ker(T )? What relation do
they satisfy?

b) Find a basis of Im(T ).

c) Find a basis of Ker(T ).
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6 (10 points). Let

V = Span
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Find a basis of V that contains the vectors:
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7 (15 points). Let P2 be the set of polynomials of degree at most 2 and M2 be the set of 2⇥ 2
matrices.

1. Explain why P2 and M2 are abstract linear spaces.

2. Which of the following subsets of P2 or M2 are linear subspaces:

i) V = {p 2 P2 | p(0) = 2};
ii) V = {p 2 P2 | p(t)� t · p0(t) = 0} (where p

0 denotes the derivative);
iii) V = {p 2 P2 | p(t) = p(�t) for all t};
iv) V = {A 2M2 | A is invertible};
v) V = {A 2 M2 | tr(A) = 0}, where the trace of A, tr(A), is the sum of the elements

on the diagonal.

Explain!
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8 (10 points). True or False:

1. There exists a 3⇥ 4 matrix with rank 4.

2. If A is in rref then at least one of the entries in each column must be 1.

3. If A is a 4⇥ 4 matrix and the system

A~x =

2
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has a unique solution, then the system

A~x = ~0

has only the solution ~x = ~0.

4. The function T


x

y

�
=


y

1

�
is a linear transformation.

5.


1 k

0 1

�3

=


1 3k

0 1

�
.

6. There exists an invertible 2⇥ 2 matrix A such that A

�1 =


1 1
1 1

�
.

7. The column vectors of a 5⇥ 4 matrix must be linearly dependent.

8. The column vectors of a 4⇥ 5 matrix must be linearly dependent.
Explain 7 and 8!

9. There exists a 3⇥ 3 matrix A such that Im(A) = ker(A).

10. The kernel of an abstract linear transformation is a linear subspace of the domain.
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