Math 419 (Fall '08)

Midterm 1

October 7, 2008

Time: 80 minutes
1 (10 points). Is there a sequence of elementary row operations that transforms

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \text { into }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

What about into

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 2 \\
1 & 2 & 1
\end{array}\right] ?
$$

Explain.

2 (10 points) Find a 3×3 matrix A such that

$$
A \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], A \cdot\left[\begin{array}{l}
0 \\
k \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], A \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

where
i) $k=1$;
ii) $k=0$.

What is the (qualitative) difference?

3 (10 points) Find the inverse of the linear transformation

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{1}\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
5 \\
3 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
2 \\
5
\end{array}\right]
$$

4 (20 points). Let V be the subspace of \mathbb{R}^{5} defined by the equations

$$
\begin{aligned}
2 x_{1}-x_{2}+2 x_{3}+4 x_{4}+x_{5} & =0 \\
x_{1}+x_{3}+2 x_{4} & =0
\end{aligned}
$$

i) Show that V is a linear subspace.
ii) Give a linear transformation S such that $V=\operatorname{Ker} S$.
iii) Give a linear transformation T such that $V=\operatorname{Im} T$.
iv) Find a basis of V.

5 (15 points). Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation associated to the matrix:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & 1 \\
3 & 6 & 9 & 6 & 3 \\
1 & 2 & 4 & 1 & 2 \\
2 & 4 & 9 & 1 & 2
\end{array}\right]
$$

a) What is n and m ? What are the dimensions of $\operatorname{Im}(T)$ and $\operatorname{Ker}(T)$? What relation do they satisfy?
b) Find a basis of $\operatorname{Im}(T)$.
c) Find a basis of $\operatorname{Ker}(T)$.

6 (10 points). Let

$$
V=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right],\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]\right)
$$

Find a basis of V that contains the vectors:

$$
\left[\begin{array}{l}
2 \\
2 \\
4 \\
4 \\
6
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
2 \\
2 \\
4 \\
4
\end{array}\right] .
$$

7 (15 points). Let P_{2} be the set of polynomials of degree at most 2 and M_{2} be the set of 2×2 matrices.

1. Explain why P_{2} and M_{2} are abstract linear spaces.
2. Which of the following subsets of P_{2} or M_{2} are linear subspaces:
i) $V=\left\{p \in P_{2} \mid p(0)=2\right\}$;
ii) $V=\left\{p \in P_{2} \mid p(t)-t \cdot p^{\prime}(t)=0\right\}$ (where p^{\prime} denotes the derivative);
iii) $V=\left\{p \in P_{2} \mid p(t)=p(-t)\right.$ for all $\left.t\right\}$;
iv) $V=\left\{A \in M_{2} \mid A\right.$ is invertible $\}$;
v) $V=\left\{A \in M_{2} \mid \operatorname{tr}(A)=0\right\}$, where the trace of $A, \operatorname{tr}(A)$, is the sum of the elements on the diagonal.
Explain!

8 (10 points). True or False:

1. There exists a 3×4 matrix with rank 4 .
2. If A is in rref then at least one of the entries in each column must be 1 .

3 . If A is a 4×4 matrix and the system

$$
A \vec{x}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

has a unique solution, then the system

$$
A \vec{x}=\overrightarrow{0}
$$

has only the solution $\vec{x}=\overrightarrow{0}$.
4. The function $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}y \\ 1\end{array}\right]$ is a linear transformation.
5. $\left[\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right]^{3}=\left[\begin{array}{cc}1 & 3 k \\ 0 & 1\end{array}\right]$.
6. There exists an invertible 2×2 matrix A such that $A^{-1}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
7. The column vectors of a 5×4 matrix must be linearly dependent.
8. The column vectors of a 4×5 matrix must be linearly dependent. Explain 7 and 8 !
9. There exists a 3×3 matrix A such that $\operatorname{Im}(A)=\operatorname{ker}(A)$.
10. The kernel of an abstract linear transformation is a linear subspace of the domain.

