1 (15 pts .) Which of the following statements are true? Put a (T) before the correct ones and an (F) before the wrong ones. (No reasoning is required.)
(一) For any two $n \times n$ matrices A and B, if $A B$ is invertible, then both A and B are invertible.
(T) If $A \vec{x}=\vec{b}$ and $A \vec{x}=\vec{c}$ are both consistent systems, so is $A \vec{x}=\vec{b}+\vec{c}$.
(F) Let A, B and C be three square matrices, and $A B=A C$, then $B=C$.
(F) Let L be a staight line in \mathbb{R}^{2} passing the origin. Then the transformation "orthogonal projection onto L " is the only linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} whose image is L.
(T) Let \vec{v}_{1} and \vec{v}_{2} be linearly independent vectors, and let $\vec{v}_{3}=\vec{v}_{1}+\vec{v}_{2}$, $\vec{v}_{4}=\vec{v}_{1}-2 \vec{v}_{2}$. Then any two vectors among $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent.

2 (15 pts.) Solve the following system of linear equations

$$
\left\{\begin{array}{r}
x+y+z+w=1 \\
2 x+2 y+2 z+3 w=4 \\
2 x+3 y+4 z+5 w=6 \\
x+3 y+5 z+10 w=15
\end{array}\right.
$$

(No partial credit will be given for this problem. Check your answer carefully.)

$$
\begin{aligned}
& \left(\begin{array}{llll:l}
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 & 6 \\
1 & 3 & 5 & 0 & 15
\end{array}\right) \rightarrow\left(\begin{array}{llll:l}
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 & 4 \\
0 & 2 & 4 & 9 & 14
\end{array}\right) \rightarrow\left(\begin{array}{cccc:c}
1 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 2 & 0 & -2 \\
0 & 2 & 4 & 0 & -4
\end{array}\right) \\
& \begin{array}{l}
\rightarrow\left(\begin{array}{cccc:c}
1 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc:c}
1 & 0 & -1 & 0 & 1 \\
0 & 1 & 2 & 0 & -2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\text { So shuton is }\left\{\begin{array}{l}
x=t+1 \\
y=-2 t-2 \\
z=t \\
w=2
\end{array}\right.
\end{array}
\end{aligned}
$$

Check: $(t+1)+(-2 t-2)+t+2=1$

$$
\begin{aligned}
& 2(t+1)+2(-2 t-2)+2 t+6=4 \\
& 2(t+1)+3(-2 t-2)+4 t+10=6 \\
& (t+1)+3(-2 t-2)+5 t+20=15
\end{aligned}
$$

3 (15 pts.) Consider the matrix

$$
A=\left(\begin{array}{lll}
2 & 3 & 4 \\
1 & 5 & 1 \\
2 & 6 & 2
\end{array}\right)
$$

(a) Is A invertible? If yes, calculate A^{-1}.
(b) Find the matrix X so that

$$
A X=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 1
\end{array}\right)
$$

(No partial credit will be given for this problem. Check your answer carefully.)

$$
\left.\begin{array}{l}
(a)\left(\begin{array}{ccc:ccc}
2 & 3 & 4 & 1 & 0 & 0 \\
1 & 5 & 1 & 0 & 1 & 0 \\
2 & 6 & 2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc:ccc}
1 & \frac{3}{2} & 2 & \frac{1}{2} & 0 & 0 \\
1 & 5 & 1 & 0 & 1 & 0 \\
2 & 6 & 2 & 0 & 0 & 1
\end{array}\right) \\
\\
\rightarrow\left(\begin{array}{ccc:ccc}
1 & \frac{3}{2} & 2 & \frac{1}{2} & 0 & 0 \\
0 & \frac{7}{2} & -1 & -\frac{1}{2} & 1 & 0 \\
0 & 3 & -2 & -1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc:ccc}
1 & \frac{3}{2} & 2 & \frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{2}{7} & -\frac{1}{7} & \frac{2}{7} & 0 \\
0 & 3 & -2 & -1 & 0 & 1
\end{array}\right) \\
\\
\rightarrow\left(\begin{array}{cccccc}
1 & 0 & \frac{17}{7} & \frac{5}{7} & -\frac{3}{7} & 0 \\
0 & 1 & -\frac{2}{7} & -\frac{1}{7} & \frac{2}{7} & 0 \\
0 & 0 & -\frac{8}{7} & -\frac{4}{7} & -\frac{6}{7} & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & \frac{17}{7} & \frac{5}{7} & -\frac{3}{7} \\
0 & 1 & -\frac{2}{7} & -\frac{1}{7} & \frac{2}{7} \\
0 \\
0 & 0 & 1 & \frac{1}{2} & \frac{3}{4}
\end{array}-\frac{7}{8}\right.
\end{array}\right)
$$

(b) $X=A^{-1}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 1\end{array}\right)=\frac{1}{8}\left(\begin{array}{ccc}-4 & -18 & 17 \\ 0 & 4 & -2 \\ 4 & 6 & -7\end{array}\right)\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 1\end{array}\right)=\frac{1}{8}\left(\begin{array}{ccc}-5 & 11 & -5 \\ 2 & 2 & 2 \\ 3 & -5 & 3\end{array}\right)$

4 (15 pts.) Let T_{1}, T_{2} be the linear transformations
T_{1} : Reflection with respect to the line $y=x ;$
T_{2} : Rotation couterclockwise by 45 degree.
Denote the matrix of T_{1} by A, and the matrix of T_{2} by B.
(a) Write down A and B explicitly.
(b) Calculate the matrix $A B A$.
(c) Describe the linear transformation $T_{1} \circ T_{2} \circ T_{1}$ as a single geometric transformation.
(i). $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad B=\left(\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right)$
(b) $A B A=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right)$
(c) $\sin Q \quad A B A=\left(\begin{array}{cc}\cos \left(-45^{\circ}\right) & -\sin \left(-45^{\circ}\right) \\ \sin \left(-45^{\circ}\right) & \cos \left(-45^{\circ}\right)\end{array}\right)$
we see $T_{1} \cdot T_{2} \cdot T_{1}=$ Rotation clockwise by 45°.

5 (20 pts.) We can identify any 2×2 matrix X with a 4 -vector \vec{x} in \mathbb{R}^{4} as follows:

$$
X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longleftrightarrow \quad \vec{x}=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

By this way, we can identify the set of all 2×2 matrices with the 4 dimensional space \mathbb{R}^{4}, and thus convert many operations on matrices as operations on \mathbb{R}^{4}. For example, we have the following transformations

$$
\begin{aligned}
& T_{1}(\vec{x}):=\operatorname{det}(X)=a d-b c \\
& T_{2}(\vec{x}):=\text { the vector corresponding to } X^{-1} \text { if } X \text { is invertible, } \\
& T_{3}(\vec{x}):=\text { the vector corresponding to } A X, \text { where } A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) .
\end{aligned}
$$

(a) Among T_{1}, T_{2}, T_{3}, which one is linear? Write down its matrix B.
(b) Is the matrix B invertible? If yes, find its inverse.
(c) We could also identify any 2×2 matrix X with a 4 -vector \vec{y} in \mathbb{R}^{4} as follows:

$$
X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longleftrightarrow \quad \vec{y}=\left(\begin{array}{l}
a \\
c \\
b \\
d
\end{array}\right)
$$

In this case, we denote the matrix for the linear transformation you found in part (a) by C. Figure out the relation between B and C.
(a) T_{3} is linear, with matrix $B=\left(\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4\end{array}\right)$ since $T_{3}\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)=\left(\begin{array}{l}a+2 c \\ b+2 d \\ 3 a+4 c \\ 3 b+4 d\end{array}\right)$
(b) Since T_{3} is invertible, with $T_{3}^{-1}(\vec{x})=A^{-1} \vec{x}=\frac{1}{-2}\left(\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right) \vec{k}\left(\begin{array}{cc}-4 & 2 \\ 3 & -1\end{array}\right) \vec{x}=\left(\begin{array}{c}-4 a+2 c \\ -4 b+2 d \\ 3 a-c \\ 3 b-d\end{array}\right)$
So B is invertible with $B^{-1}=\left(\begin{array}{cccc}-4 & 0 & 2 & 0 \\ 0 & -4 & 0 & 2 \\ 3 & 0 & -1\end{array}\right)$
(c) B and C are similar, since they are matiest for the sase linear transformation, under different basis. In for, $C=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) B\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 3 & 4\end{array}\right)$

6 (20 pts.) Consider the matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & 7 & 7 \\
2 & 1 & 9 & 10 \\
2 & 0 & 4 & 6
\end{array}\right)
$$

(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) For which values) of the constant a is the vector $\left(\begin{array}{l}a \\ 2 \\ 4\end{array}\right)$ a linear combination of the column vectors of A ?

$$
\begin{aligned}
R R E F(A) & :\left(\begin{array}{cccc}
1 & 1 & 7 & 7 \\
2 & 1 & 9 & 10 \\
2 & 0 & 4 & 6
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 7 & 7 \\
0 & -1 & -5 & -4 \\
0 & -2 & -10 & -8
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 7 & 7 \\
0 & 1 & 5 & 4 \\
0 & -2 & -10 & 8
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & 5 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

(a) Basis of $/ \mathrm{m}(A):\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)^{0}$
(6) $\operatorname{Ken}(A)=\left(\begin{array}{c}-2 t-3 s \\ -5 t-4 s \\ t \\ 5\end{array}\right) \Rightarrow \operatorname{BaSs}\left(\begin{array}{c}-2 \\ -5 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ -4 \\ 0 \\ 1\end{array}\right)$
(c)

$$
\begin{aligned}
&\left(\begin{array}{ccccc}
1 & 1 & 7 & 7 & a \\
2 & 1 & 9 & 10 & 2 \\
2 & 0 & 4 & 6 & 4
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 1 & 7 & 7 & 9 \\
0 & -1 & -5 & -4 & 2-2 a \\
0 & -2 & -10 & -8 & 4-2 a
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 1 & 7 & 7 & a \\
0 & 1 & 5 & 4 & 2 a-2 \\
0 & -2 & -10 & -8 & 4-2 a
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 2 & 3 & 2-a \\
0 & 1 & 5 & 4 & 2 a-2 \\
0 & 0 & 0 & 0 & 2 a
\end{array}\right)
\end{aligned}
$$

$\therefore\left(\begin{array}{l}a \\ 2 \\ 4\end{array}\right)$ is a linear combith $\Leftrightarrow 2 a=0 \Leftrightarrow a=0$.
In this case, $\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)=2\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)-2\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.

