1 (15 pts.) Which of the following statements are true? Put a (T) before the correct ones and an (F) before the wrong ones. (No reasoning is required.)
(T) Let A be an $n \times n$ matrices so that $A+A^{2012}$ is invertible. Then A is invertible.

$$
A+A^{2012}=A\left(I+A^{2011}\right)
$$

(T) If a system of linear equations has two different solutions, it must has infinitely many solutions.
(T) There exists a 2×2 matrix A such that $A^{2}=-I_{2}$.

$$
\left.A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { (rotation by } \frac{\pi}{2}\right)
$$

(F) The composition of two reflections is still a reflection.
rotation
(F) If vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ are linearly dependent, then \vec{v}_{3} must be a linear combination of \vec{v}_{1} and \vec{v}_{2}.

It may happens that $\vec{v}_{1}^{\prime \prime} \vec{v}_{2}$ and \vec{v}_{s} is indepediont

2 (15 pts.) Solve the system of linear equations

$$
\left\{\begin{aligned}
x+2 y+z+w & =2 \\
2 x+2 y+2 w & =0 \\
4 x+2 y-3 z+5 w & =-2
\end{aligned}\right.
$$

(No partial credit will be given for this problem. Check your answer carefully.)

$$
\begin{aligned}
& \text { Sol: }\left(\begin{array}{cccc:c}
1 & 2 & 1 & 1 & 2 \\
2 & 2 & 0 & 2 & 0 \\
4 & 2 & -3 & 5 & -2
\end{array}\right) \rightarrow\left(\begin{array}{cccc:c}
1 & 2 & 1 & 1 & 2 \\
0 & -2 & -2 & 0 & -4 \\
0 & -6 & -7 & 1 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cccc:c}
1 & 2 & 1 & 1 & 2 \\
0 & 1 & 1 & 0 & 2 \\
0 & 6 & 7 & -1 & 10
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc:c}
1 & 0 & -1 & 1 & -2 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 1 & -1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{cccc:c}
1 & 0 & 0 & 0 & -4 \\
0 & 1 & 0 & 1 & 4 \\
0 & 0 & 1 & -1 & -2
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
x=-4 \\
y=-t+4 \\
z=t-2 \\
w=t
\end{array}\right.
\end{aligned}
$$

Check.

$$
\begin{aligned}
& -4-2 t+8+t-2+t=2 v \\
& -8-2 t+8+2 t=0 \vee \\
& -16-2 t+8-3 t+6+5 t=-2
\end{aligned}
$$

3 (15 pts.) Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1 \\
2 & 3 & 2
\end{array}\right)
$$

(a) Find A^{-1}.
(b) Using part (a) to solve the linear system $A \vec{x}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$.
(No partial credit will be given for this problem. Check your answer carefully.)
Sol: (a) $\left(\begin{array}{cccccc}1 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 2 & 3 & 2 & 0 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccccc}1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -3 & -1 & -2 & 1 & 0 \\ 0 & -1 & 0 & -2 & 0 & 1\end{array}\right) \rightarrow\left(\begin{array}{cccccc}1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 0 & -1 \\ 0 & 3 & 1 & 2 & -1 & 0\end{array}\right)$
$\rightarrow\left(\begin{array}{cccccc}1 & 0 & 1 & -3 & 0 & 2 \\ 0 & 1 & 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & -4 & -1 & 3\end{array}\right) \rightarrow\left(\begin{array}{cccccc}1 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & -4 & -1 & 3\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 0 & -1 \\ -4 & -1 & 3\end{array}\right)$
Check: $\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & 2\end{array}\right)\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & -1 \\ 4 & -1 & 3\end{array}\right)=\left(\begin{array}{ccc}1+4-4 & 1+0-1 & -1-2+3 \\ 2+2-4 & 2+0-1 & -2-1+3 \\ 2+6-8 & 2+0-2 & -2-3+6\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \vee$
(b) $\vec{x}=A^{-1}\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & -1 \\ -4 & -1 & 3\end{array}\right)\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)=\left(\begin{array}{c}6 \\ 5 \\ -13\end{array}\right)$.

Check: $A \vec{x}=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & 2\end{array}\right)\left(\begin{array}{c}6 \\ 5 \\ -33\end{array}\right)=\left(\begin{array}{c}6+10-13 \\ 12+5-13 \\ 12+15-26\end{array}\right)=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right) v$.

4 (15 pts.) Consider the matrix

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 4 \\
2 & 0 & 1 & 2 \\
m & 4 & 1 & 9
\end{array}\right) \leftarrow \text { month/date }
$$

where m is an arbitrary constant.
(a) What is the rank of A ?
(b) Find a basis for the image of A.
(c) Find a basis for the kernel of A.
(Your solution may contains the constant m.)

$$
\begin{aligned}
\text { Sol }: & \left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
2 & 0 & 1 & 2 \\
m & 4 & 1 & 9
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 0 & 1 & -6 \\
0 & 4 & 1 & 9-4 m
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 0 & 1 & -6 \\
0 & 4 & 0 & 15-4 m
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 4 \\
0 & 0 & 1 & -6 \\
0 & 1 & 0 & \frac{15}{4}-m
\end{array}\right) \\
& \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & \frac{15}{4}-6
\end{array}\right)
\end{aligned}
$$

(a) $\operatorname{rank} A=3$
(b) $\left(\begin{array}{l}1 \\ 2 \\ m\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \quad\left[\right.$ or: $\left(\begin{array}{l}0 \\ 0 \\ 4\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}4 \\ 2 \\ 9\end{array}\right):$ obvioudy lineendy independent! $]$
(c)

$$
\begin{aligned}
& A \vec{x}=0 \Rightarrow \vec{x}=\left(\begin{array}{c}
-4 t \\
\left(\frac{15}{4}-m\right) t \\
6 t \\
t
\end{array}\right)=t\left(\begin{array}{c}
-4 \\
m-\frac{15}{4} \\
6 \\
1
\end{array}\right) \\
& \therefore \text { basis of } \operatorname{ker} A=\left(\begin{array}{c}
-4 \\
m-\frac{15}{4} \\
6 \\
1
\end{array}\right)
\end{aligned}
$$

(Workspace for problem 5)
Sol: (a) $T_{1}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=x+2 y+3 z \Rightarrow A_{1}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$

$$
T_{2}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 y \\
2 x \\
0
\end{array}\right) \Rightarrow A_{2}=\left(\begin{array}{ccc}
0 & -2 & 0 \\
2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(b) $A_{3}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ccc}0 & -2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{lll}4 & -2 & 0\end{array}\right)$
(c) $T_{4}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=$ ratation of prijection of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=$ retation of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
$T_{4}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\cdots \cdots \cdot\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\cdots\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}-1 \\ 0 \\ 0\end{array}\right)$

$$
\begin{aligned}
& T_{4}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\cdots \\
& \therefore A_{4}=\left(\begin{array}{lll}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

(d) Since $A_{2}=2 A_{4}=\left(\begin{array}{cc}2 & \\ 2 & 2\end{array}\right) A_{4}$, we see:
$T_{4}=$ First priject $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ onte $x y$ plane, then notate countercloctavie by $\frac{\pi}{2}$,
then scale by 2 .

6 (20 pts.) Let A be an $m \times n$ matrix so that

$$
A\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)=\binom{2}{4}, \quad A\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)=\binom{0}{0}, \quad A\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\binom{1}{2}
$$

(a) What is n ? What is m ?
(b) Show that the vectors $\vec{v}_{1}=\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right), \vec{v}_{3}=\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$ form a basis of \mathbb{R}^{3}.
(c) Express the vector $\vec{w}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ as a linear combination of the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
(d) Find $A \vec{w}_{1}$.
(e) Let \vec{w}_{2} be a vector in \mathbb{R}^{3} whose coordinate vector is $\left[\vec{w}_{2}\right]_{\mathcal{B}}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ under the basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$. Find \vec{w}_{2} and $A \vec{w}_{2}$.

Sd. (4) $m=2, n=3$
(b)

$$
\left(\begin{array}{ccc}
1 & 0 & 2 \\
-2 & 2 & 0 \\
0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 4 \\
0 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 2 & 4
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\Rightarrow\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right)$ linearly independent \Rightarrow basis.
(c)

$$
\begin{aligned}
& \left(\begin{array}{ccc:c}
1 & 0 & 2 & 1 \\
-2 & 2 & 0 & 2 \\
0 & 1 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 2 & 4 & 4 \\
0 & 1 & 0 & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & 3 \\
0 & 2 & 4 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 4 & -2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -\frac{1}{2}
\end{array}\right) \Rightarrow \vec{w}_{1}=2 \overrightarrow{v_{1}}+3 \vec{v}_{2}-\frac{1}{2} \vec{v}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } A \vec{w}_{1}=2 A \vec{v}_{1}+3 A \vec{v}_{2}-\frac{1}{2} A \vec{v}_{3}=2\binom{2}{4}+3\binom{0}{0}-\frac{1}{2}\binom{1}{2}=\binom{7 / 2}{7} \\
& \text { (e) } \vec{w}_{2}=\vec{v}_{1}+2 \vec{v}_{2}+3 \vec{v}_{3}=\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)+2\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)+3\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
7 \\
2 \\
2
\end{array}\right) \\
& A \overrightarrow{u_{2}}=A \vec{v}_{1}+2 A \vec{v}_{2}+3 A \overrightarrow{u_{3}}=\binom{2}{4}+2\binom{0}{0}+3\binom{1}{2}=\binom{5}{10}
\end{aligned}
$$

