Math 419 - Linear Spaces and Matrix Theory

Exam 2
11/06/2012

- Your PRINTED name is: Practice Exam

Grading

- This is a 80 -minutes closed-book exam.

No calculator or notes are allowed.

- This exam booklet contains six problems,

2 on 14 sheets of paper including the front cover.

- The last two pages are to be used as scratch paper. Please detach them carefully before exam. DO NOT write your solution on the scratch paper! ${ }^{4}$
- Full credit will be given only if all reasoning 5 and work is provided. For some problems, you may get partial credits if you show your idea clearly. 6

Total:

1 ($\mathbf{1 5}$ pts.) Which of the following statements are true? Put a (T) before the correct ones and an (F) before the wrong ones. (No justification is required.)
() If A is the matrix of an orthogonal projection, then $A^{2}=A$.
() If A and B are both orthogonal $n \times n$ matrices, then $A B=B A$.
() The set of all smooth functions $f(x)$ such that $\int_{-1}^{1} f(x) d x=0$ is a linear space.
() The map $T(f)=\left(\begin{array}{ll}f(0) & f(1) \\ f(2) & f(3)\end{array}\right)$ is an isomorphism from P_{4} to $\mathbb{R}^{2 \times 2}$.
() If the entries of two vectors \vec{v} and \vec{w} are all negative, then the angle between \vec{v} and \vec{w} must be an acute angle.

2 (15 pts.) Fill in the blanks. (No justification is required. No partial credit.)
(a) The trace of the matrix $\left(\begin{array}{ccc}3 & 4 & 5 \\ 12 & 3 & 14 \\ 0 & 0 & 1\end{array}\right)$ is \square.
(b) Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ be orthonormal vectors in \mathbb{R}^{15}. Then the length of the vector $v=\vec{v}_{1}-\vec{v}_{2}+2 \vec{v}_{3}-2 \vec{v}_{4}$ is \qquad
(c) The dimension of the space of "all polynomials in \mathcal{P}_{3} that are also odd functions" is \qquad
(d) Under the basis

$$
\mathcal{B}=\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

of $\mathbb{R}^{2 \times 2}$, the coordinate vector of the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is \qquad
(e) Write down a 4×4 orthogonal matrix that is not the identity matrix

3 ($\mathbf{1 5}$ pts.) Let V be the subset of $\mathbb{R}^{3 \times 3}$ consisting of all 3×3 matrices A such that $A^{T}=-A$.
(a) Argue that V is a linear subspace of P_{3}.
(b) Find a basis of V.
(c) Consider the linear transformation $T: V \rightarrow V$ defined by

$$
\begin{aligned}
& T(A)=S^{T} A S \\
& \text { where } S \text { is the matrix }\left(\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 2 \\
-1 & -1 & 0
\end{array}\right) \text {. Find the matrix of } T \text { with } \\
& \text { respect to the basis you get in part (b). }
\end{aligned}
$$

(Extra workspace for problem 3)

4 ($\mathbf{1 5}$ pts.) (a) Find the least square solution to the system

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right) \vec{x}=\left(\begin{array}{l}
1 \\
2 \\
3 \\
5
\end{array}\right) .
$$

(b) Find a linear function of the form $f(t)=c_{0}+c_{1} t$ that best fits the data $(0,1),(1,2),(2,3),(3,5)$.
(c) Find the matrix of the orthogonal projection onto the subspace of \mathbb{R}^{4} spanned by the vectors $\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.
(Extra workspace for problem 4)

5 (20 pts.) Let $V=\operatorname{Im}(A)$, where $A=\left(\begin{array}{ccc}1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 0\end{array}\right)$.
(a) Find an orthonormal basis of V.
(b) Find the $Q R$ decomposition of A.
(c) Find the orthogonal projection of $\vec{v}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T}$ onto V.
(d) Find an orthonormal basis of V^{\perp}.
(Workspace for problem 5)
(Extra workspace for problem 5)

6 (20 pts.) Let V be an inner product space, and X_{1}, X_{2}, X_{3} three elements in V. Suppose we know that $\left\langle X_{i}, X_{j}\right\rangle$ is the entry $a_{i j}$ of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
3 & 50 & 8 \\
0 & 8 & 4
\end{array}\right)
$$

Use this information to answer the following questions.
(a) Find $\left|X_{1}\right|$.
(b) Find the angle enclosed by X_{2} and X_{3}.
(c) Find $\left|X_{1}+X_{2}\right|$.
(d) Find $\operatorname{Proj}_{V}\left(X_{3}\right)$, where $V=\operatorname{span}\left(X_{1}, X_{2}\right)$.

For each of the following matrices B, there is no way to find elements X_{1}, X_{2}, X_{3} so that the entry $b_{i j}$ is $\left\langle X_{i}, X_{j}\right\rangle$. Explain why (case by case).
(e) $B=\left(\begin{array}{ccc}-1 & 3 & 0 \\ 3 & 50 & 8 \\ 0 & 8 & 4\end{array}\right) \quad$ (f) $\left(\begin{array}{lll}1 & 3 & 0 \\ 3 & 5 & 8 \\ 0 & 8 & 4\end{array}\right) \quad$ (g) $\left(\begin{array}{ccc}1 & 3 & 1 \\ 3 & 50 & 8 \\ 0 & 8 & 4\end{array}\right)$
(Extra workspace for problem 6)

The page is intended for use as scratch paper.

The page is intended for use as scratch paper.

