Math 419 – Linear Spaces and Matrix Theory

Exam 2

11/06/2012

► Your PRINTED name is: Practice Exam

	Grading
▶ This is a 80-minutes <u>closed-book</u> exam. No calculator or notes are allowed.	1
▶ This exam booklet contains six problems, on 14 sheets of paper including the front cover.	2
► The last two pages are to be used as scratch	3
paper. Please detach them carefully before exam. DO NOT write your solution on the scratch paper!	4
▶ Full credit will be given only if all reasoning and work is provided. For some problems, you may	5
get partial credits if you show your idea clearly.	6

Total:

- 1 (15 pts.) Which of the following statements are true? Put a (T) before the correct ones and an (F) before the wrong ones. (No justification is required.)
 - () If A is the matrix of an orthogonal projection, then $A^2 = A$.
 - () If A and B are both orthogonal $n \times n$ matrices, then AB = BA.
 - () The set of all smooth functions f(x) such that $\int_{-1}^{1} f(x) dx = 0$ is a linear space.

() The map
$$T(f) = \begin{pmatrix} f(0) & f(1) \\ f(2) & f(3) \end{pmatrix}$$
 is an isomorphism from P_4 to $\mathbb{R}^{2 \times 2}$.

() If the entries of two vectors \vec{v} and \vec{w} are all negative, then the angle between \vec{v} and \vec{w} must be an acute angle. 2 (15 pts.) Fill in the blanks. (No justification is required. No partial credit.)

(a) The trace of the matrix
$$\begin{pmatrix} 3 & 4 & 5 \\ 12 & 3 & 14 \\ 0 & 0 & 1 \end{pmatrix}$$
 is _____.

- (b) Let $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ be orthonormal vectors in \mathbb{R}^{15} . Then the length of the vector $v = \vec{v}_1 \vec{v}_2 + 2\vec{v}_3 2\vec{v}_4$ is _____.
- (c) The dimension of the space of "all polynomials in \mathcal{P}_3 that are also odd functions" is _____.
- (d) Under the basis

$$\mathcal{B} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix})$$

of $\mathbb{R}^{2 \times 2}$, the coordinate vector of the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is _____.

(e) Write down a 4×4 orthogonal matrix that is not the identity matrix

- 3 (15 pts.) Let V be the subset of $\mathbb{R}^{3\times 3}$ consisting of all 3×3 matrices A such that $A^T = -A$.
 - (a) Argue that V is a linear subspace of P_3 .
 - (b) Find a basis of V.
 - (c) Consider the linear transformation $T: V \to V$ defined by

 $T(A) = S^{T}AS,$ where S is the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ -1 & -1 & 0 \end{pmatrix}$. Find the matrix of T with respect to the basis you get in part (b). (Extra workspace for problem 3)

4 (15 pts.) (a) Find the least square solution to the system
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}.$$

- (b) Find a linear function of the form $f(t) = c_0 + c_1 t$ that best fits the data (0, 1), (1, 2), (2, 3), (3, 5).
- (c) Find the matrix of the orthogonal projection onto the subspace of \mathbb{R}^4 spanned by the vectors $\begin{pmatrix} 0\\1\\2\\3 \end{pmatrix}$ and $\begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix}$.

(Extra workspace for problem 4)

5 (20 pts.) Let
$$V = \text{Im}(A)$$
, where $A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

- (a) Find an orthonormal basis of V.
- (b) Find the QR decomposition of A.
- (c) Find the orthogonal projection of $\vec{v} = (1 \ 2 \ 3 \ 4)^T$ onto V.
- (d) Find an orthonormal basis of V^{\perp} .

(Workspace for problem 5)

(Extra workspace for problem 5)

6 (20 pts.) Let V be an inner product space, and X_1, X_2, X_3 three elements in V. Suppose we know that $\langle X_i, X_j \rangle$ is the entry a_{ij} of the matrix

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 50 & 8 \\ 0 & 8 & 4 \end{pmatrix}.$$

Use this information to answer the following questions.

- (a) Find $|X_1|$.
- (b) Find the angle enclosed by X_2 and X_3 .
- (c) Find $|X_1 + X_2|$.
- (d) Find $\operatorname{Proj}_V(X_3)$, where $V = \operatorname{span}(X_1, X_2)$.

For each of the following matrices B, there is no way to find elements X_1, X_2, X_3 so that the entry b_{ij} is $\langle X_i, X_j \rangle$. Explain why (case by case).

(e)
$$B = \begin{pmatrix} -1 & 3 & 0 \\ 3 & 50 & 8 \\ 0 & 8 & 4 \end{pmatrix}$$
 (f) $\begin{pmatrix} 1 & 3 & 0 \\ 3 & 5 & 8 \\ 0 & 8 & 4 \end{pmatrix}$ (g) $\begin{pmatrix} 1 & 3 & 1 \\ 3 & 50 & 8 \\ 0 & 8 & 4 \end{pmatrix}$

(Extra workspace for problem 6)

The page is intended for use as scratch paper.

The page is intended for use as scratch paper.