MAT-127A-2 FINAL EXAM March 23, 2004

2 hours, 7 problems, closed books, closed notes, no calculators

- 1. [9 points] Give $\liminf(s_n)$ and $\limsup(s_n)$ for the following sequences (s_n) (no proofs are needed).
 - (a) [3 points] $(-1)^n(1-\frac{1}{n})$
 - (b) [3 points] $\sin(\frac{\pi n}{3})$
 - (c) [3 points] $(-1)^n n n$
- **2.** [12 points] Assume that $\lim_{x\to 1^+} f(x) = 0$ and that f(x) > 0 for all $x \in \mathbb{R}$. Find $\lim_{x\to 1^+} \frac{1}{f(x)}$ and prove your assertion.

3. [18 points] Let

$$f(x) = \begin{cases} -x & \text{for } x < 1\\ x & \text{for } x \ge 1. \end{cases}$$

Prove or disprove the following statements:

- (a) f is uniformly continuous on $(-\infty, 1)$
- (b) f is uniformly continuous on $(1, \infty)$ (c) f is uniformly continuous on $(1, \infty) \cup (-\infty, 1)$.

4. [9 points] Prove that $x^3 = \cos x$ for some x in $(0, \frac{\pi}{2})$.

5. [12 points] Prove that the function $f(x) = \ln x - \frac{x-1}{e-1}$ attains its maximum on (1, e).

6. [20 points] Let f be a function such that

$$|f(x)| \le x^2$$
 for all $x \in [-1, 1]$.

Prove that f is differentiable at 0 and f'(0) = 0.

- 7. [20 points] Let (s_n) and (t_n) be two sequences such that (s_n) is unbounded and (t_n) is convergent (to a real number).
 - (a) Prove that the sequence $(s_n + t_n)$ is unbounded.
- (b) Will the result in (a) remain always true if (t_n) diverges to $+\infty$ (instead of being convergent)? (Prove this or find an example showing that this fails. Just a correct guess will not earn eny credit)