FINAL EXAM, ADVANCED CALCULUS I, FALL 2009

Name:

In all questions, explain your answer. In this test you can use without proofs theorems that were proved in the book, just give a reference.

1.(15 pts) Which two of the following inequalities have the property that a number x satisfies both of them if and only if |x - 3| < 1?

A: |x - 5| < 2B: |x - 4| < 2C: |x + 2| < 3D: |x - 1| < 3 2. (15 pts) Let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} . Which one of the following statements implies that for every $\varepsilon > 0$ there exist $m, n \in \mathbb{N}$ such that $|x_n - x_m| < \varepsilon$?

A: $\lim_{n\to\infty} x_n = -\infty$

B: the sequence (x_n) is bounded

C: for every $n \in \mathbb{N}$, $|x_{n+1} - x_n| < 0.01$

D: (x_n) is a decreasing sequence

3. (15 pts) Let $a \in \mathbb{R}$, and f, g are functions on (a-1, a+1). Which two of the following statements, considered together, imply that the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist and are equal.

A: there exist $\varepsilon, \delta > 0$ such that if $|x - a| < \delta$ then $|f(x) - g(x)| < \varepsilon$

B: f is continuous at a

C: for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x - a| < \delta$ then $|f(x) - g(x)| < \varepsilon$

D: there exists a sequence (x_n) such that $\lim_{n\to\infty} x_n = a$ and the limits $\lim_{n\to\infty} f(x_n)$ and $\lim_{n\to\infty} g(x_n)$ exist and are equal

4. (15 pts) Which two of the following statements, considered together, imply that $f(x) \ge g(x)$ for every $x \in [a, b]$.

A: f,g are differentiable on (a,b) and $f^{'}(x)\geq g^{'}(x)$ for every $x\in(a,b)$

B: there exists $c \in (a, b)$ such that $\lim_{x \to c} (f(x) - g(x)) \ge 0$

C: for every interval $(c,d) \subset [a,b]$ there exists $x \in (c,d)$ such that $f(x) \geq g(x)$

D: f, g are continuous on [a, b].

5. (15 pts) A function f is defined on [0, 1] and has exactly two roots on [0, 1]. Which of the following are possible?

A: f is increasing on [0, 1]

B: there exists $c \in (0,1)$ such that f is increasing on each of the intervals (0,c) and (c,1)

C: f is differentiable on (0, 1) and

$$f(0) = f(1/3) = f(2/3) = f(1)$$

D: f is continuous on [0, 1] and

$$f(0) = -1, f(1/3) = 1, f(2/3) = -1, f(1) = 1$$

6. (15 pts) Which one of the following sets is compact in \mathbb{R} ? A: (0,1] B: $\{\frac{1}{n}: n \in N\}$ C: $[1, \infty)$ D: $\{0\} \cup \{-\frac{1}{n^2}: n \in \mathbb{N}\}$

6

7. (20 pts) Prove by induction (starting with n = 2) that for every $n \ge 2$

$$5^n \ge (2n+3)3^{n-1} + 2^n$$

8. (20 pts) Prove using the definition of limit (find $N(\varepsilon)$ for every $\varepsilon>0)$ that

$$\lim_{n \to \infty} \frac{2n+1}{3n-1} = \frac{2}{3}$$

9. (20 pts) A function f is defined by $f(x) = x \sin(\frac{1}{x}), x \neq 0$ and f(0) = 0. Is f continuous at the origin? Is f differentiable at the origin?

10. (20 pts) A function f is continuous on [0, 2] and differentiable on on (0, 1) and on (1, 2). Suppose that $f'(x) \leq 1$ for every $x \in (0, 1)$, and $f'(x) \leq 2$ for every $x \in (1, 2)$. Prove that

$$f(2) - f(0) \le 3.$$

10

11. (20 pts) Suppose that f is an integrable function on $[0, \pi/2]$, and for every interval $(c, d) \subset [0, \pi/2]$ there exists a point $x \in (c, d)$ such that $f(x) \leq \sin x$. Prove that

$$\int_0^{\pi/2} f \le 1.$$

12. (20 pts) Let G be an open in \mathbb{R} and suppose that for every $n \in \mathbb{N}$ the interval $(0, \frac{1}{n})$ contains a point that does not belong to G. Prove that $0 \notin G$.

12

Extra Credit (10 pts). Suppose that (x_n) is a sequence of non-negative numbers such that $x_1 = 1$ and for every $n \in \mathbb{N}$

$$x_{n+2} < \frac{x_n}{2} + \frac{x_{n+1}}{4}$$

Prove that the series

$$\sum_{n=1}^{\infty} \frac{5^n x_n}{4^n}$$

converges.