FINAL EXAM, ADVANCED CALCULUS I, FALL 2009

Name:
In all questions, explain your answer. In this test you can use without proofs theorems that were proved in the book, just give a reference.
1.(15 pts) Which two of the following inequalities have the property that a number x satisfies both of them if and only if $|x-3|<1$?

A: $|x-5|<2$
B: $|x-4|<2$
C: $|x+2|<3$
D: $|x-1|<3$
2. (15 pts) Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in \mathbb{R}. Which one of the following statements implies that for every $\varepsilon>0$ there exist $m, n \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon$?

A: $\lim _{n \rightarrow \infty} x_{n}=-\infty$
B: the sequence $\left(x_{n}\right)$ is bounded
C: for every $n \in \mathbb{N},\left|x_{n+1}-x_{n}\right|<0.01$
$\mathrm{D}:\left(x_{n}\right)$ is a decreasing sequence
3. (15 pts) Let $a \in \mathbb{R}$, and f, g are functions on $(a-1, a+1)$. Which two of the following statements, considered together, imply that the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist and are equal.

A: there exist $\varepsilon, \delta>0$ such that if $|x-a|<\delta$ then $|f(x)-g(x)|<\varepsilon$
$\mathrm{B}: f$ is continuous at a
C: for any $\varepsilon>0$ there exists $\delta>0$ such that if $|x-a|<\delta$ then $|f(x)-g(x)|<\varepsilon$

D: there exists a sequence $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty} x_{n}=a$ and the limits $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ and $\lim _{n \rightarrow \infty} g\left(x_{n}\right)$ exist and are equal
4. (15 pts) Which two of the following statements, considered together, imply that $f(x) \geq g(x)$ for every $x \in[a, b]$.

A: f, g are differentiable on (a, b) and $f^{\prime}(x) \geq g^{\prime}(x)$ for every $x \in$ (a, b)

B: there exists $c \in(a, b)$ such that $\lim _{x \rightarrow c}(f(x)-g(x)) \geq 0$
C: for every interval $(c, d) \subset[a, b]$ there exists $x \in(c, d)$ such that $f(x) \geq g(x)$

D: f, g are continuous on $[a, b]$.
5. (15 pts) A function f is defined on $[0,1]$ and has exactly two roots on $[0,1]$. Which of the following are possible?
$\mathrm{A}: f$ is increasing on $[0,1]$
B: there exists $c \in(0,1)$ such that f is increasing on each of the intervals $(0, c)$ and $(c, 1)$

C: f is differentiable on $(0,1)$ and

$$
f(0)=f(1 / 3)=f(2 / 3)=f(1)
$$

$\mathrm{D}: f$ is continuous on $[0,1]$ and

$$
f(0)=-1, f(1 / 3)=1, f(2 / 3)=-1, f(1)=1
$$

6. (15 pts) Which one of the following sets is compact in \mathbb{R} ?

A: $(0,1]$
B: $\left\{\frac{1}{n}: n \in N\right\}$
C: $[1, \infty)$
D: $\{0\} \cup\left\{-\frac{1}{n^{2}}: n \in \mathbb{N}\right\}$
7. (20 pts) Prove by induction (starting with $n=2$) that for every $n \geq 2$

$$
5^{n} \geq(2 n+3) 3^{n-1}+2^{n}
$$

8. (20 pts) Prove using the definition of limit (find $N(\varepsilon)$ for every $\varepsilon>0)$ that

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{3 n-1}=\frac{2}{3}
$$

9. (20 pts) A function f is defined by $f(x)=x \sin \left(\frac{1}{x}\right), x \neq 0$ and $f(0)=0$. Is f continuous at the origin? Is f differentiable at the origin?
10. (20 pts) A function f is continuous on $[0,2]$ and differentiable on on $(0,1)$ and on $(1,2)$. Suppose that $f^{\prime}(x) \leq 1$ for every $x \in(0,1)$, and $f^{\prime}(x) \leq 2$ for every $x \in(1,2)$. Prove that

$$
f(2)-f(0) \leq 3
$$

11. (20 pts) Suppose that f is an integrable function on $[0, \pi / 2]$, and for every interval $(c, d) \subset[0, \pi / 2]$ there exists a point $x \in(c, d)$ such that $f(x) \leq \sin x$. Prove that

$$
\int_{0}^{\pi / 2} f \leq 1
$$

12. (20 pts) Let G be an open in \mathbb{R} and suppose that for every $n \in \mathbb{N}$ the interval $\left(0, \frac{1}{n}\right)$ contains a point that does not belong to G. Prove that $0 \notin G$.

Extra Credit (10 pts). Suppose that $\left(x_{n}\right)$ is a sequence of nonnegative numbers such that $x_{1}=1$ and for every $n \in \mathbb{N}$

$$
x_{n+2}<\frac{x_{n}}{2}+\frac{x_{n+1}}{4}
$$

Prove that the series

$$
\sum_{n=1}^{\infty} \frac{5^{n} x_{n}}{4^{n}}
$$

converges.

