MAT-127A-2 MIDTERM EXAM February 13, 2004

50 minutes, 4 problems, closed books, closed notes, no calculators

- 1. Give inf S and sup S (as real numbers or $+\infty$ or $-\infty$) for the following sets S:
 - (a) [3 points] $\{x\in\mathbb{Q} \ : \ x^4<1\}$
 - (b) [5 points] $\{x \in \mathbb{R} : \sin x > 0\}$
 - (c) [7 points] $\bigcap_{n=1}^{\infty} (-n, \frac{1}{n})$
- **2.** Give the following if they exist (as real numbers or $+\infty$ or $-\infty$). Otherwise assert "NOT EXIST".
 - (a) [5 points] $\lim \frac{5n^2 + (-1)^n}{3n^2 + n + 1}$
 - (b) [5 points] $\lim (n-10)^{1/3}$
 - (a) [5 points] $\lim \cos(\frac{\pi n}{4})$

- **3.** Let $s_1 = 0$ and $s_{n+1} = \frac{1}{2}(s_n + 1)$ for $n \ge 1$.
 - (a) [10 points] Use induction to prove that $s_n \leq 1$ for all n.
 - (b) [7 points] Prove that (s_n) is a nondecreasing sequence.
 - (c) [13 points] Prove that $\lim s_n$ exists and find $\lim s_n$.

4. Let (s_n) and (t_n) be two convergent sequences and such that

$$s_n \leq t_n \text{ for all } n \in \mathbb{N}.$$

- (a) [25 points] Prove that $\lim s_n \leq \lim t_n$. (Hint: you may want to look at the sequence $(t_n s_n)$, but you might come up with a direct proof as well)
- (b) [15 points] Will part (a) remain true if one replaces **both** inequality signs "\leq" above by the strict inequality signs "\leq"? (Prove or give an example of sequences for which this fails. Just a correct guess will not earn any credit)