Midterm Exam 2. Math 451, Fall 2015, Prof. Roman Vershynin

1. (10 points) Determine whether the following series converge or diverge. Prove your claims.
(a) (5 points) $\sum_{n=1}^{\infty} n^{-1-\frac{1}{n}}$
(b) (5 points) $\sum_{n=1}^{\infty}\left(n-\sqrt{n^{2}-1}\right)$

Solution. (a) This series diverges. To see this, we represent the series as

$$
\sum x_{n} \quad \text { where } \quad x_{n}=\frac{1}{n} \cdot \frac{1}{n^{1 / n}}
$$

and apply the Limit Comparison Theorem with $y_{n}:=\frac{1}{n}$. Since $\lim n^{1 / n}=1$, we have $\lim x_{n} / y_{n}=1$. Since the harmonic series $\sum y_{n}$ diverges, it follows that $\sum x_{n}$ diverges as well.
(b) This series diverges, too. Multiplying and dividing by the conjugate, we can represent this series as

$$
\sum x_{n} \quad \text { where } \quad x_{n}=\frac{1}{n+\sqrt{n^{2}-1}}
$$

Apply the Limit Comparison Theorem with $y_{n}:=\frac{1}{n}$. The standard computation shows that $\lim x_{n} / y_{n}=1 / 2$. Since the series $\sum y_{n}$ diverges, it follows that $\sum x_{n}$ diverges as well.
2. (10 points) Let f and g be continuous functions on an interval $I=[a, b]$. Assume that

$$
\sup \{f(x): x \in I\}=\sup \{g(x): x \in I\}
$$

Prove that there exists a point $c \in I$ such that $f(c)=g(c)$.

Solution. The Max/Min Theorem shows that the supremum of f on I is attained at some point $x_{1} \in I$ and the supremum of g on I is attained at some point $x_{2} \in I$. The assumption is that

$$
f\left(x_{1}\right)=g\left(x_{2}\right)
$$

Consider the function $h:=f-g$. We have

$$
h\left(x_{1}\right)=f\left(x_{1}\right)-g\left(x_{1}\right)=g\left(x_{2}\right)-g\left(x_{1}\right) \geq 0
$$

where the last inequality follows since g attains its maximum at x_{2}. Similarly we obtain

$$
h\left(x_{2}\right)=f\left(x_{2}\right)-g\left(x_{2}\right)=f\left(x_{2}\right)-f\left(x_{1}\right) \leq 0
$$

Since $h=f-g$ is a continuous function, the Intermediate Value Theorem implies the existence of a point $c \in I$ such that $h(c)=0$ and thus $f(c)=g(c)$.
3. (10 points)
(a) (5 points) Let g be a function that is continuous at 0 . Prove that the function $f(x):=x g(x)$ is differentiable at 0 .
(b) (5 points) Conversely, let f be a function that is differentiable at 0 and such that $f(0)=0$. Prove that there exists a function g that is continuous at 0 and satisfies $f(x)=x g(x)$ for all x.

Solution. (a) We have

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} g(x)=g(c)
$$

where the first equality follows from the definition of f and the second, by continuity of g at 0 . Thus f is differentiable at 0 .
(b) Define the function g as follows:

$$
g(x):= \begin{cases}f(x) / x, & x \neq 0 \\ f^{\prime}(0), & x=0\end{cases}
$$

Then g clearly satisfies $f(x)=x g(x)$ for all x. Continuity at 0 holds since

$$
\lim _{x \rightarrow 0} g(x)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=g(0) .
$$

4. (10 points) Show that the equation $e^{x}=1-x$ has exactly one real solution.

Solution. One solution is $x=0$. To prove that there are no other solutions, let us consider the function

$$
f(x):=e^{x}-1+x
$$

and show that $f(x) \neq 0$ for all $x \neq 0$. Suppose this does not hold; then $f\left(x_{0}\right)=f(0)=0$ for some $x_{0} \neq 0$. By Rolle's theorem, there exists c strictly between 0 and x_{0} such that $f^{\prime}(c)=0$. However, $f^{\prime}(c)=e^{c}+1 \geq 1$ for all $c \in \mathbb{R}$. This contradiction completes the proof.

