
Advanced Calculus I. Math 451, Fall 2016, Prof. Vershynin

Principle of Mathematical Induction

1. Prove that 1 + 2 + · · ·+ n = 1
2
n(n+ 1) for all n ∈ N.

2. Prove that 12 + 22 + · · ·+ n2 = 1
6
n(n+ 1)(2n+ 1) for all n ∈ N.

3. Prove that 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 for all n ∈ N.
Hint: to verify induction step, work with the right hand side with n+1 instead
of n. Use the formula for (a+ b)2.

4. Prove that n2 > n+ 1 for all integers n ≥ 2.
Hint: use a more general statement of the Principle of Mathematical Induc-
tion where the base can be arbitrary instead of 1. This is Statement 1.2.3 in
the book.

5. Decide for which integers the inequality 2n > n2 is true, and prove your
claim by induction.

Countable and uncountable sets

6. Prove that the union of two countable sets is countable. Formally, let A
and B are countable subsets of some set S. Prove that A ∪B is countable.

7. (a) Prove that the set of all two-element subsets of N is countable.
Hint: Use the zig-zag counting from the proof that Q is countable.

(b) For any n ∈ N, prove that the set of all n-element subsets of N is
countable.
Hint: Proceed by induction on n.



8. (a) A real number x is called an algebraic number if it is a real root of
some polynomial with integer coefficients, that is if

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

for some n ∈ N and a0, a1, . . . , an ∈ N. (For example, all rational numbers, as
well as

√
2 and 5−1/3 are algebraic numbers.) Prove that the set of algebraic

numbers is countable.
Hint: use the Fundamental Theorem of Algebra, which states that such

polynomial has at most n real roots.

9. (This logic problem will somehow pave the way for our discussion of
continuity and limit.) Find the negations of the following statements.

(a) Anyone living in Los Angeles has blue eyes.
(b) Anyone living in Los Angeles who has blue eyes will win a lottery.
(c) Anyone living in Los Angeles who has blue eyes will win a lottery and

will take their retirement before the age of 50.

Supremum and infimum

10. Let S be a subset of R which is bounded below. Prove that inf(S)
exists, and that

sup(−S) = − inf(S).

(Here −S denotes the set {−s : s ∈ S}.)

11. Let A and B be subsets of R which are bounded above. Show that
A ∪B is bounded above, and

sup(A ∪B) = max
(

supA, supB
)
.

12. Formulate and prove a statement analogous to Problem 11 about sets
that are bounded below, and the infimum.

13. Let A and B be nonempty bounded subsets of R. Prove the following:
(a) sup(A+B) = supA+ supB;
(b) inf(A+B) = inf A+ inf B.

(Here A+B denotes the set {a+ b : a ∈ A, b ∈ B}.)



14. Consider the set S = {1− n−2 : n ∈ N}. Show that supS = 1.

15. Consider the set S = {2−n − 2−m : n,m ∈ N}. Find supS and inf S.
(First guess these values, and then prove your claim.)

16. Let S be a bounded subset of R. Show that

sup(aS) = a · supS; inf(aS) = a · inf S for every a ≥ 0.

(Here aS denotes the set {as : s ∈ S}.)
Do these identities hold for a < 0?

17. For the following sets, find the supremum and infimum, if they exist.
(First guess these values, and then prove your claim.)

(a) S := {x ∈ R : x > 1/x};
(b) T = {n/(n+ 1) : n ∈ N}.

18. Show that for each a ∈ R.

inf{x ∈ Q : x > a} = a.

19. Prove that
∞⋂
n=1

(
0,

1

n

)
= ∅.

The definition of the limit

20. Compute the limits of the following sequences. (First guess the value
and then prove your claim using the definition of the limit.)

(a) lim
1

lnn
.

(b) lim
n2 − 1

2n2 + 1
.

(c) lim

√
n

n+ 3
.

(d) lim
( 1

n
− 1

n+ 2

)
.



21. Consider a sequence (xn) and let yn = |xn|.
(a) Prove that if (xn) converges, then (yn) converges, too.
(b) Show that the converse is false. (Give an example of a divergent

sequence whose absolute values converge. No proof is needed, just an exam-
ple.)

22. Using the definition of the limit, prove that

lim
3n

n!
= 0.

Hint: try to bound the quantity 3n/n! by some simpler quantity; perhaps by
C/n with a suitable constant C.

23. Let (xn) be a convergent sequence, and a ∈ R. Suppose that xn ≥ a
for all but finitely many n ∈ N. Use the definition of the limit to show that

limxn ≥ a.

24. According to the definition given in class, a sequence (xn) is bounded if
the set of its values {x1, . . . , xn} is a bounded set in R.

Show that (xn) is bounded if and only if there exists M ∈ R such that

|xn| ≤M for every n ∈ N.

25. Prove that any convergent sequence satisfies

inf{xn} ≤ limxn ≤ sup{xn}.

26. Consider two sequences, (xn) and (yn). Assume that for any ε > 0
there exists N such that

|xn − yn| < ε for all n ≥ N.

Prove that (xn) converges if and only if (yn) converges.

Limit theorems

From now on, feel free to use limit theorems.



27. Find the following limits.

(a) lim
4
√
n+ 3

5
√
n+ 2n0.1

.

(b) lim
2n− 7

5n2 + n+ 1
.

(c) lim
√

9n2 + n− 3n− 1.

(d) limn1/n3

.

28. Use limit theorems to compute limits in Problem 20 b, c, d.

29. Let x1 := 10 and xn+1 := 1
2
xn + 2. Show that the sequence (xn)

converges, and compute its limit.

30. Compute the value of the following continued fraction:

2−
1

2−
1

2−
1

2−
1

· · ·

Hint: interpret this value as a limit of a certain recursively defined sequence.
Show that that sequence converges and compute its limit.

31. Let A be a subset of R that is bounded below. Show that there exists
a decreasing sequence (xn) whose terms xn are elements of A, and such that

limxn = inf A.

32. Prove that a sequence (xn) is unbounded if and only if there exists a
subsequence (xnk

) that satisfies

lim
1

xnk

= 0.



33. Find lim supxn and lim inf xn for the sequence (xn) defined as

xn = (−1)n +
1

n
.

Prove your claims.

34. Construct a sequence (xn) so that for every real number x, there is a
subsequence (xnk

) that converges to x.

35. Let a, b be real numbers such that |a| 6= |b|. Determine when the
sequence

xn :=
an − bn

an + bn

converges and diverges, depending on the values of a and b.

36. Consider sequences (xn) and (yn).
(a) Is it always true that

lim sup(xn + yn) = lim supxn + lim sup yn?

Prove this or give a counterexample.
(b) Is it always true that

lim sup(xn + yn) ≤ lim supxn + lim sup yn?

Prove this or give a counterexample.

37. Let x1 := 1, x2 := 2 and xn+1 := 1
4
xn + 3

4
xn−1 for n > 2. Does the

sequence (xn) converge or diverge? Prove your claim.

38. Prove that if lim xn = +∞ and a sequence (yn) converges, then lim(xn+
yn) = +∞.

39. Prove that (xn) is bounded if and only if lim sup |xn| exists (as a finite
number).

40. Calculate lim(n!)1/n. (Determine if the sequence converges, diverges to
+∞, or diverges but not to +∞. Prove your claims.)



41. Let (xn) be a monotone sequence. Prove that if there exists a conver-
gent subsequence (xnk

) then the entire sequence (xn) converges.

Series

42. Suppose that
∑
xn is a series with positive terms. Show that if

∑
xn

converges then
∑

1
xn

diverges. What about the converse to this statement?

43. Prove the following facts:
(a) If

∑
xn and

∑
yn both converge then

∑
(xn + yn) converges.

(b) Let n0 ∈ N. The series
∑∞

n=1 xn converges if and only if the series∑∞
n=n0

xn converges.

44. Prove the following powerful Cauchy condensation test for series
∑
xn

such that x1 ≥ x2 ≥ · · · ≥ 0. The series
∑
xn converges if and only if the

series
x1 + 2x2 + 4x4 + 8x8 + · · · =

∑
2kx2k

converges.
Hint: Group the terms like we did when we analyzed harmonic series,

and bound each group above and below. Specifically, argue that x2 ≤ x2 ≤ x1,
2x4 ≤ x3 + x4 ≤ 2x2, 4x8 ≤ x5 + x6 + x7 + x8 ≤ 4x4, etc. Summing
these inequalities will help you compare the partial sums of the two series in
question.

45. Using the Cauchy condensation test from the previous problem, deter-
mine if the following series converge or diverge.

(a)
∑ 1

n
(harmonic series)

(b)
∑ 1

n lnn

(c)
∑ 1

n ln2 n

46. Let an ≥ 0, bn ≥ 0 for all n. Show that if
∑
a2n and

∑
b2n converge

then
∑
anbn converges.

Hint: think about the Comparison Test.



47. Determine if the following series converge or diverge.

(a)
∑ 2n

n3 + 1

(b)
∑ cos2 n

n2

(c)
∑ 1√

n!

48. Compute the following limits if they exist. Prove your claims.

(a) lim
x→0

√
x

(b) lim
x→1

√
x− 1

x− 1

(c) lim
x→0

x

|x|

(d) lim
x→0

x3/2

|x|
(e) lim

x→0
cos(1/x2)

(f) lim
x→0

√
x cos(1/x2)

(g) lim
x→1

√
1 + 3x2 − 2

x− 1

49. Define the function f : R → R by letting f(x) := x for rational x and
f(x) := 2 for irrational x. Find all points c at which f has a limit.

50. Compute the following limits if they exist. Prove your claims.

(a) lim
x→+∞

e−x
2

(b) lim
x→0+

e−1/x
3

and lim
x→0−

e−1/x
3

(c) lim
x→+∞

p(x) and lim
x→−∞

p(x) for a general polynomial p(x) = anx
n +

an−1x
n−1 + · · ·+ a0.



(d) lim
x→+∞

2
√
x− x

2
√
x+ x

(e) lim
x→0

√
1 + 3x2 − 1

x2

51. Formulate and prove a result that relates to each other the following
two identities: limx→c f(x) = 0 and limx→c 1/f(x) = +∞.

52. Formulate and prove a result that relates to each other the following
two limits: limx→+∞ f(x) and limx→0+ f(1/x).

53. Let a < b < c and consider two continuous functions f : [a, b]→ R and
g : [b, c]→ R.1 Now glue them together by defining the function

h(x) :=

{
f(x) if x ∈ [a, b)

g(x) if x ∈ [b, c].

Find conditions under which h is continuous. Prove your claim.

54. Prove that the function f(x) = |x| is continuous on R.

55. A function f : R→ R is called additive if

f(x+ y) = f(x) + f(y) for all x, y ∈ R.

Prove that if a continuous function f is additive, then there exists a constant
b such that

f(x) = bx for all x ∈ R.

Hint: first show the conclusion for x ∈ N, then for x ∈ Q, then for x ∈ R.
This should work with b := f(1).

1When we say “continuous function” we mean that it is continuous on its entire domain.



56. Let f, g : D → R be continuous functions. Prove that

h(x) := max
(
f(x), g(x)

)
is a continuous function.

Hint: Prove and then use the identity

max(a, b) =
a+ b

2
+
|a− b|

2
, a, b ∈ R.

57. Let f : [a, b] → R be a continuous function that takes strictly positive
values, i.e. f(x) > 0 for all x ∈ [a, b]. Show that there exists δ > 0 such that

f(x) > δ for all x ∈ [a, b].

58. Consider a polynomial p(x) = anx
n + an−1x

n−1 + · · · + a0. Show that
if the degree n is odd, then p(x) has a real root (i.e. there exists x ∈ R such
that p(x) = 0.)

59. In this problem, you will mathematically demonstrate the following
fact: there are, at any time, antipodal points on the earth’s equator that
have the same temperature.

Let T (x) denote the temperature at the point of the equator with longi-
tude x, where x ranges from 0◦ to 360◦. We assume that T is a continuous
function, and that T (0) = T (360) since 0◦ and 360◦ denote the same point
on the equator. The desired conclusion is that there exists c ∈ [0, 180] such
that

T (c) = T (c+ 180).

Prove this conclusion.
Hint: consider the function f(x) = T (x)−T (x+ 180) defined on [0, 180].

60. (a) Prove that the function f(x) = 1/x is uniformly continuous on
[a,∞] for every a > 0, but is not uniformly continuous on (0,∞).

(b) Prove that the function f(x) = sin(1/x) is not uniformly continuous
on (0, 1).



(c) Prove that the function

f(x) =

{
x sin(1/x) if x 6= 0

0 if x = 0

is uniformly continuous on [−a, a], where a > 0 is a fixed real number.
(d) Prove that the function f(x) = x2 is uniformly continuous on [−R,R]

for every R > 0, but is not uniformly continuous on R.

61. Prove that a continuous function f : [a, b]→ R is injective if and only
if f is strictly monotone on [a, b].

62. Compute f ′(0) or show it does not exist for the following functions.
Prove your claims. For each of the examples, we set f(0) = 0, and for x 6= 0
we define f as follows:

(a) f(x) = sin(1/x)

(b) f(x) = x2 sin(1/x)

(c) f(x) = x sin(1/x)

(d) f(x) =
√
x

63. Give an example of a function f : R → R which is differentiable at a
single point and not differentiable anywhere else.

Hint: define the function differently for rational and irrational points.

64. (Landau’s calculus) Recall that for two functions f and g, we say
that

f(z) = o(g(z)) as z → 0 if lim
z→0

f(z)

g(z)
= 0

and f(z) = O(g(z)) as z → 0 if the function f/g is bounded on some neigh-
borhood of zero, that is

∃δ > 0,M ≥ 0 such that |f(z)| ≤M |g(z)| for all z ∈ (−δ, δ).

Interpret and prove each of the following statements formally, as z → 0. (In
other words, make it into a rigorous limit theorem using functions f , g, etc.)

(a) o(z) + o(z) = o(z).



Hint: a formal statement here is the following. For any functions f and
h satisfying limz→0 f(z)/z = 0 and limz→0 h(z)/z = 0, one has limz→0(f(z)+
h(z))/z = 0.

(b) O(1) ·O(z) = O(z).

(c) O(z) + o(z) = O(z).

(d) o(O(z)) = o(z).

65. (Change of variables in the limit) Let f and g be functions defined
on appropriate domains. (For simplicity, assume they are defined on all of
R.)

(a) Show that if

lim
x→u

f(x) = v and lim
y→v

g(y) = w

then
lim
x→u

g(f(x)) = w.

Hint: this should be similar to the proof of the theorem about composition of
continuous functions.

(b) Compute

lim
x→1

cos
(√x− 1

x− 1

)
.

66. Prove the following inequality for all x, y ∈ R:

| cosx− cos y| ≤ |x− y|.

Hint: use Mean Value Theorem.

67. Let f : I → R be a function that is differentiable on an interval I.
Prove that f is Lipschitz if and only if the derivative f ′ is bounded.

68. Assume that a function f : R→ R satisfies

|f(x)− f(y)| ≤ (x− y)2

for all x, y ∈ R. Prove that f is a constant function.



69. Prove the following inequalities for x ≥ 0:

(a) sin x ≤ x;

(b) cos x ≥ 1− x2/2.

Hint: Apply Mean Value Theorem.

70. Evaluate the following limits. (L’Hospital’s Rule can be used from this
point on.)

(a) lim
x→0

x2 − sin2 x

x4

(b) lim
x→+∞

(
1 +

a

x

)x
for a ∈ R.

(c) lim
x→0+

tanx− x
x3

(d) lim
x→0+

(sinx)x.

71. Show that Dirichlet function

f(x) =

{
1, x ∈ Q
0, x ∈ R \Q

is not integrable on any interval [a, b].

72. This problem was removed from the list.

73. Suppose that f is integrable on [a, b], and M is such that |f(x)| ≤ M
for all x ∈ [a, b]. Show that∣∣∣ ∫ b

a

f(x) dx
∣∣∣ ≤M(b− a).

74. (Translation invariance) The translate of a function f : [a, b] → R
by a number c is the function g : [a+c, b+c]→ R defined by g(x) = f(x−c).
Prove that if f is integrable, then g is integrable and∫ b+c

a+c

g(x) dx =

∫ b

a

f(x) dx.



75. Consider a continuous function f on [a, b] such that f(x) ≥ 0 for all x.

Prove that if
∫ b

a
f = 0 then f is the constant zero function.

76. (a) Let h : [a, b]→ R be a continuous function. Prove that if
∫ b

a
h = 0

then there exists a point c ∈ [a, b] such that h(c) = 0.

(b) Let f, g : [a, b]→ R be continuous functions. Prove that if
∫ b

a
f =

∫ b

a
g

then there exists a point c ∈ [a, b] such that f(c) = g(c).

77. Show that there does not exist a continuously differentiable function g
(i.e. a function whose derivative is continuous function) such that:

g(0) = 0, g(1) = 1, |g′(x)| ≤ 1

2
for all x ∈ [0, 1].

Hint: apply Fundamental Theorem of Calculus.

78. Let f : [a, b]→ R be a continuous function. Suppose∫ x

a

f(t) dt =

∫ b

x

f(t) dt for every x ∈ [a, b].

Show that f is the constant zero function on [a, b].
Hint: apply Fundamental Theorem of Calculus.

79. Show that if f is integrable on [a, b] then |f | is integrable as well, and∣∣∣ ∫ b

a

f(x) dx
∣∣∣ ≤ ∫ b

a

|f(x)| dx.

80. Suppose that f : [0, 1] → R is a Lipschitz function with constant K.
(Refer to Definition 5.4.4 in the book if you forget this notion.) Prove that
f is integrable on [0, 1], and∣∣∣ ∫ 1

0

f(x) dx− 1

n

n∑
i=1

f(i/n)
∣∣∣ ≤ K

n

for any n ∈ N.



81. Let f : R→ R be a differentiable function. Determine whether each of
the following statements are true or false. Prove or give a counterexample.

(a) If f is bounded on R then for every ε > 0 there exists a point c ∈ R
such that |f ′(c)| < ε.

Hint: apply Mean Value Theorem.

(b) If limx→+∞ f
′(x) = 0 then f is bounded on R.

(c) If |f ′(x)| ≤ 1/(1 + x2) for all x ∈ R, then f is bounded on R.
Hint: apply Fundamental Theorem of Calculus.

82. Determine convergence or divergence of the following series.

(a)
∑

sin
π

n2

(b)
∑

cos
π

n2

(c)
∑ 1− e−n log n

n

(d)
∑ cos(πn/4)√

n

(e)
∑(

1− 1

n

)n2

83. Let f be a rational function (ratio of two polynomials) and r ∈ R.
Show that the series

∑
f(n) rn converges absolutely if |r| < 1 and diverges

if |r| > 1.

84. (Quantitative version of Integral Test) Let f : [1,∞)→ (0,∞) be
a decreasing function, which is integrable on any bounded interval. Consider
the error terms

εN :=
N∑

n=1

f(n)−
∫ N

1

f(x) dx.

(a) Show that the sequence (εn) is decreasing and non-negative, and

0 ≤ lim εN ≤ f(1).



(b) Deduce from (a) the following result on the grown of the harmonic
series:

γ := lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

N
− logN

)
exists, and γ ∈ [0, 1]. (This γ is called Euler’s constant; its actual value is
γ ≈ 0.577.)


