1. Let X be a random variable which takes values $0,1,2, \ldots, n$ and satisfies $\mathbb{E}[X]=\operatorname{Var}(X)=$ 1. Show that, for every positive integer k,

$$
\mathbb{P}(X>k) \leq \frac{1}{k^{2}}
$$

2. Consider independent random variables $X, Y \sim \operatorname{Unif}[0,1]$. Let $Z=X+Y$ and $W=$ $X-Y$. Compute the following correlations:
(a) $\rho_{X, Y}$
(b) $\rho_{X, Z}$
(c) $\rho_{Z, W}$.
3. Particles are subject to collisions, which cause them to split into two parts with each part a fraction of the parent. Suppose that this fraction is uniformly distributed between 0 and 1, for each collision. Following a single particle through several splittings, we obtain a fraction of the original particle

$$
Z=X_{1} \cdot X_{2} \cdots X_{n}
$$

with $X_{j} \sim \operatorname{Unif}[0,1]$ being independent. Show that the density of the random variable Z_{n} is

$$
f(z)=\frac{1}{(n-1)!}(-\log z)^{n-1}
$$

Hint: Show that $Y_{k}=-\log X_{k}$ is exponentially distributed. Use this to find the density of $S_{n}=Y_{1}+Y_{2}+\cdots+Y_{n}$, and from this the CDF and density of Z_{n}.

