Midterm Exam 1. Math 451, Fall 2015, Prof. Vershynin

1. (10 points) Let S be a subset of \mathbb{R}. Suppose S is bounded above, and some upper bound u is an element of S. Prove that $\sup S=u$.
2. (10 points) For each of the following statements, decide if it is true or false. Prove or give a counterexample.
(a) (5 points) There exists a sequence of irrational numbers which converges to a rational number.
(b) (5 points) There exists a sequence that has a bounded subsequence but has no convergent subsequences.
3. (10 points) Compute the limit

$$
\lim \left(\sqrt{4 n^{2}+n}-2 n\right)
$$

4. (10 points) Let $\left(x_{n}\right)$ be a sequence that converges to a non-zero limit. Prove that all except finitely many terms x_{n} are non-zero.
5. (10 points) Let $\left(x_{n}\right)$ be an increasing sequence and $\left(y_{n}\right)$ be a decreasing sequence. Assume that $x_{n} \leq y_{n}$ for all n. Prove that both sequences converge.
6. (10 points) Prove that

$$
\lim \frac{n!}{n^{n}}=0
$$

