1. (10 points) Let S be a subset of \mathbb{R} . Suppose S is bounded above, and some upper bound u is an element of S. Prove that $\sup S = u$.

2. (10 points) For each of the following statements, decide if it is true or false. Prove or give a counterexample.

- (a) (5 points) There exists a sequence of irrational numbers which converges to a rational number.
- (b) (5 points) There exists a sequence that has a bounded subsequence but has no convergent subsequences.
- **3.** (10 points) Compute the limit

$$\lim \left(\sqrt{4n^2 + n} - 2n\right).$$

4. (10 points) Let (x_n) be a sequence that converges to a non-zero limit. Prove that all except finitely many terms x_n are non-zero.

5. (10 points) Let (x_n) be an increasing sequence and (y_n) be a decreasing sequence. Assume that $x_n \leq y_n$ for all n. Prove that both sequences converge.

6. (10 points) Prove that

$$\lim \frac{n!}{n^n} = 0.$$